skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Chromium Substitution Within Ruthenium Oxide Aerogels Enables High Activity Oxygen Evolution Electrocatalysts for Water Splitting
Acidic oxygen evolution reaction (OER) electrocatalysts that provide high activity, lower costs, and long-term stability are needed for the wide-scale adoption of proton-exchange membrane (PEM) water electrolyzers for generating hydrogen through electrochemical water splitting. We report the effects of chromium substitution and temperature treatments on the structure, OER activity, and electrochemical stability of ruthenium oxide (RuO2) aerogel OER electrocatalysts. RuO2 and Cr-substituted RuO2 aerogels (Ru0.6Cr0.4O2) were synthesized using sol–gel chemistry and then thermally treated at different temperatures. Introducing chromium into the synthesis increased the surface area (7–11 times higher) and pore volume (5–6 times higher) relative to RuO2 aerogels. X-ray diffraction analysis is consistent with s that Cr was substituted into the rutile RuO2 structure. X-ray photoelectron spectroscopy showed that trivalent Cr substitution altered the surface electronic structure and ratio of surface hydroxides. The specific capacitance values of Cr-substituted RuO2 aerogels were consistent with charge storage within a hydrous surface. Cr-substituted RuO2 aerogels exhibited 26 times the OER mass activity and 3.5 times the OER specific activity of RuO2 aerogels. Electrochemical stability tests show that Cr-substituted RuO2 aerogels exhibit similar stability to commercial RuO2. Understanding how metal substituents can be used to alter OER activity and stability furthers our ability to obtain highly active, durable, and lower-cost OER electrocatalysts for PEM electrolyzers.  more » « less
Award ID(s):
2122041
PAR ID:
10598296
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Crystals
Date Published:
Journal Name:
Crystals
Volume:
15
Issue:
2
ISSN:
2073-4352
Page Range / eLocation ID:
116
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-efficiency and low-cost catalysts for the oxygen evolution reaction (OER) in acidic electrolytes are critical for electrochemical water splitting in proton exchange membrane (PEM) electrolyzers to produce green hydrogen, a clean fuel for sustainable energy conversion and storage. Among OER catalysts, solid-state synthesized SrCo1−xIrxO3 has demonstrated superior activity compared to commercial standards, such as IrO2 and RuO2. However, the solid-state synthesis process is economically inefficient for industrial use due to the potential for impurities and low yield of the final product. In addition, the requirement for electrochemical cycling to activate the catalyst introduces contaminations and uncertainties for industrial applications. In this study, a modified solution-based sol–gel method was employed to produce SrCo0.5Ir0.5O3 (SCIO) with high purity and yield. Subsequent ball milling and acid leaching treatments were applied, resulting in a catalyst with higher efficiency than those activated solely by electrochemical cycling. The electrochemical analysis and physical characterizations of our SCIO catalyst after ex-situ post-synthesis treatments show a similar active phase in composition and structure to those obtained through in situ electrochemical cycling and activation. Our approach simplifies the preparation process, making the catalyst ready for direct use in PEM electrolyzers without further treatment, offering a promising solution for producing high-performance, industrial-scale OER catalysts. 
    more » « less
  2. null (Ed.)
    Acidic oxygen evolution reaction (OER) electrocatalysts that have high activity, extended durability, and lower costs are needed to further the development and wide-scale adoption of proton-exchange membrane electrolyzers. In this work, we report hydrous cobalt–iridium oxide two-dimensional (2D) nanoframes exhibit higher oxygen evolution activity and similar stability compared with commercial IrO 2 ; however, the bimetallic Co–Ir catalyst undergoes a significantly different degradation process compared with the monometallic IrO 2 catalyst. The bimetallic Co–Ir 2D nanoframes consist of interconnected Co–Ir alloy domains within an unsupported, carbon-free, porous nanostructure that allows three-dimensional molecular access to the catalytically active surface sites. After electrochemical conditioning within the OER potential range, the predominately bimetallic alloy surface transforms to an oxide/hydroxide surface. Oxygen evolution activities determined using a rotating disk electrode configuration show that the hydrous Co–Ir oxide nanoframes provide 17 times higher OER mass activity and 18 times higher specific activity compared to commercial IrO 2 . The higher OER activities of the hydrous Co–Ir nanoframes are attributed to the presence of highly active surface iridium hydroxide groups. The accelerated durability testing of IrO 2 resulted in lowering of the specific activity and partial dissolution of Ir. In contrast, the durability testing of hydrous Co–Ir oxide nanoframes resulted in the combination of a higher Ir dissolution rate, an increase in the relative contribution of surface iridium hydroxide groups and an increase in specific activity. The understanding of the differences in degradation processes between bimetallic and monometallic catalysts furthers our ability to design high activity and stability acidic OER electrocatalysts. 
    more » « less
  3. Abstract High‐efficiency and low‐cost catalysts for oxygen evolution reaction (OER) are critical for electrochemical water splitting to generate hydrogen, which is a clean fuel for sustainable energy conversion and storage. Among the emerging OER catalysts, transition metal dichalcogenides have exhibited superior activity compared to commercial standards such as RuO2, but inferior stability due to uncontrolled restructuring with OER. In this study, we create bimetallic sulfide catalysts by adapting the atomic ratio of Ni and Co in CoxNi1‐xSyelectrocatalysts to investigate the intricate restructuring processes. Surface‐sensitive X‐ray photoelectron spectroscopy and bulk‐sensitive X‐ray absorption spectroscopy confirmed the favorable restructuring of transition metal sulfide material following OER processes. Our results indicate that a small amount of Ni substitution can reshape the Co local electronic structure, which regulates the restructuring process to optimize the balance between OER activity and stability. This work represents a significant advancement in the development of efficient and noble metal‐free OER electrocatalysts through a doping‐regulated restructuring approach. 
    more » « less
  4. null (Ed.)
    Iridium oxide (IrO 2 ) is one of the best known electrocatalysts for the oxygen evolution reaction (OER) taking place in a strongly acidic solution. IrO 2 nanocatalysts with high activity as well as long-term catalytic stability, particularly at high current densities, are highly desirable for proton exchange membrane water electrolysis (PEM-WE). Here, we report a simple and cost-effective strategy for depositing ultrafine oxygen-defective IrO x nanoclusters (1–2 nm) on a high-surface-area, acid-stable titanium current collector (H-Ti@IrO x ), through a repeated impregnation–annealing process. The high catalytically active surface area resulting from the small size of IrO x and the preferable electronic structure originating from the presence of oxygen defects enable the outstanding OER performance of H-Ti@IrO x , with low overpotentials of 277 and 336 mV to deliver 10 and 200 mA cm −2 in 0.5 M H 2 SO 4 . Moreover, H-Ti@IrO x also shows an intrinsic specific activity of 0.04 mA cm catalyst −2 and superior mass activity of 1500 A g Ir −1 at an overpotential of 350 mV. Comprehensive experimental studies and density functional theory calculations confirm the important role of oxygen defects in the enhanced OER performance. Remarkably, H-Ti@IrO x can continuously catalyze the OER in 0.5 M H 2 SO 4 at 200 mA cm −2 for 130 hours with minimal degradation, and with a higher IrO x loading, it can sustain at such a high current density for over 500 hours without significant performance decay, holding substantial promise for use in PEM-WE. 
    more » « less
  5. null (Ed.)
    Iron single atom catalysts have emerged as one of the most active electrocatalysts towards the oxygen reduction reaction (ORR), but the unsatisfactory durability and limited activity for the oxygen evolution reaction (OER) has hampered their commercial applications in rechargeable metal–air batteries. By contrast, cobalt-based catalysts are known to afford excellent ORR stability and OER activity, due to the weak Fenton reaction and low OER Gibbs free energy. Herein, a bimetal hydrogel template is used to prepare carbon aerogels containing Fe–Co bimetal sites (NCAG/Fe–Co) as bifunctional electrocatalysts towards both ORR and OER, with enhanced activity and stability, as compared to the monometal counterparts. High-resolution transmission electron microscopy, elemental mapping and X-ray photoelectron spectroscopy measurements demonstrate homogeneous distributions of the metal centers within defected carbon lattices by coordination to nitrogen dopants. X-ray absorption spectroscopic measurements, in combination with other results, suggest the formation of FeN 3 and CoN 3 moieties on mutually orthogonal planes with a direct Fe–Co bonding interaction. Electrochemical measurements show that NCAG/Fe–Co delivers a small ORR/OER potential gap of only 0.64 V at the current density of 10 mA cm −2 , 60 mV lower than that (0.70 V) with commercial Pt/C and RuO 2 catalysts. When applied in a flexible Zn–air battery, the dual-metal NCAG/Fe–Co catalyst also shows a remarkable performance, with a high open-circuit voltage of 1.47 V, a maximum power density of 117 mW cm −2 , as well as good rechargeability and flexibility. Results from this study may offer an ingenious protocol in the design and engineering of highly efficient and durable bifunctional electrocatalysts based on dual metal-doped carbons. 
    more » « less