skip to main content


Title: Stochastic Occupancy Grid Map Prediction in Dynamic Scenes: Dataset
Three occupancy grid map (OGM) datasets for the paper titled "Stochastic Occupancy Grid Map Prediction in Dynamic Scenes" by Zhanteng Xie and Philip Dames 1. OGM-Turtlebot2: collected by a simulated Turtlebot2 with a maximum speed of 0.8 m/s navigates around a lobby Gazebo environment with 34 moving pedestrians using random start points and goal points 2. OGM-Jackal: extracted from two sub-datasets of the socially compliant navigation dataset (SCAND), which was collected by the Jackal robot with a maximum speed of 2.0 m/s at the outdoor environment of the UT Austin 3. OGM-Spot: extracted from two sub-datasets of the socially compliant navigation dataset (SCAND), which was collected by the Spot robot with a maximum speed of 1.6 m/s at the Union Building of the UT Austin The relevant code is available at: OGM prediction: https://github.com/TempleRAIL/SOGMP OGM mapping with GPU: https://github.com/TempleRAIL/occupancy_grid_mapping_torch  more » « less
Award ID(s):
1830419
NSF-PAR ID:
10510866
Author(s) / Creator(s):
;
Publisher / Repository:
Zenodo
Date Published:
Subject(s) / Keyword(s):
Occupancy Grid Map Robot Navigation Environment Prediction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We focus on the problem of planning the motion of a robot in a dynamic multiagent environment such as a pedestrian scene. Enabling the robot to navigate safely and in a socially compliant fashion in such scenes requires a representation that accounts for the unfolding multiagent dynamics. Existing approaches to this problem tend to employ microscopic models of motion prediction that reason about the individual behavior of other agents. While such models may achieve high tracking accuracy in trajectory prediction benchmarks, they often lack an understanding of the group structures unfolding in crowded scenes. Inspired by the Gestalt theory from psychology, we build a Model Predictive Control framework (G-MPC) that leverages group-based prediction for robot motion planning. We conduct an extensive simulation study involving a series of challenging navigation tasks in scenes extracted from two real-world pedestrian datasets. We illustrate that G-MPC enables a robot to achieve statistically significantly higher safety and lower number of group intrusions than a series of baselines featuring individual pedestrian motion prediction models. Finally, we show that G-MPC can handle noisy lidar-scan estimates without significant performance losses. 
    more » « less
  2. Abstract

    As technology advances, Human-Robot Interaction (HRI) is boosting overall system efficiency and productivity. However, allowing robots to be present closely with humans will inevitably put higher demands on precise human motion tracking and prediction. Datasets that contain both humans and robots operating in the shared space are receiving growing attention as they may facilitate a variety of robotics and human-systems research. Datasets that track HRI with rich information other than video images during daily activities are rarely seen. In this paper, we introduce a novel dataset that focuses on social navigation between humans and robots in a future-oriented Wholesale and Retail Trade (WRT) environment (https://uf-retail-cobot-dataset.github.io/). Eight participants performed the tasks that are commonly undertaken by consumers and retail workers. More than 260 minutes of data were collected, including robot and human trajectories, human full-body motion capture, eye gaze directions, and other contextual information. Comprehensive descriptions of each category of data stream, as well as potential use cases are included. Furthermore, analysis with multiple data sources and future directions are discussed.

     
    more » « less
  3. To facilitate the study of how passive leg stiffness influences locomotion dynamics and performance, we have developed an affordable and accessible 400 g quadruped robot driven by tunable compliant laminate legs, whose series and parallel stiffness can be easily adjusted; fabrication only takes 2.5 hours for all four legs. The robot can trot at 0.52 m/s or 4.4 body lengths per second with a 3.2 cost of transport (COT). Through locomotion experiments in both the real world and simulation we demonstrate that legs with different stiffness have an obvious impact on the robot’s average speed, COT, and pronking height. When the robot is trotting at 4 Hz in the real world, changing the leg stiffness yields a maximum improvement of 37.1% in speed and 62.0% in COT, showing its great potential for future research on locomotion controller designs and leg stiffness optimizations. 
    more » « less
  4. Some information contained in historical topographic maps has yet to be captured digitally, which limits the ability to automatically query such data. For example, U.S. Geological Survey’s historical topographic map collection (HTMC) displays millions of spot elevations at locations that were carefully chosen to best represent the terrain at the time. Although research has attempted to reproduce these data points, it has proven inadequate to automatically detect and recognize spot elevations in the HTMC. We propose a deep learning workflow pretrained using large benchmark text datasets. To these datasets we add manually crafted training image/label pairs, and test how many are required to improve prediction accuracy. We find that the initial model, pretrained solely with benchmark data, fails to predict any HTMC spot elevations correctly, whereas the addition of just 50 custom image/label pairs increases the predictive ability by ∼50%, and the inclusion of 350 data pairs increased performance by ∼80%. Data augmentation in the form of rotation, scaling, and translation (offset) expanded the size and diversity of the training dataset and vastly improved recognition accuracy up to ∼95%. Visualization methods, such as heat map generation and salient feature detection, can be used to better understand why some predictions fail. 
    more » « less
  5. Precision agricultural robots require high-resolution navigation solutions. In this paper, we introduce a robust neural-inertial sequence learning approach to track such robots with ultra-intermittent GNSS updates. First, we propose an ultra-lightweight neural-Kalman filter that can track agricultural robots within 1.4 m (1.4–5.8× better than competing techniques), while tracking within 2.75 m with 20 mins of GPS outage. Second, we introduce a user-friendly video-processing toolbox to generate high-resolution (±5 cm) position data for fine-tuning pre-trained neural-inertial models in the field. Third, we introduce the first and largest (6.5 hours, 4.5 km, 3 phases) public neural-inertial navigation dataset for precision agricultural robots. The dataset, toolbox, and code are available at: https://github.com/nesl/agrobot. 
    more » « less