Conventional soft robots are designed with constant, passive stiffness properties, based on desired motion capabilities. The ability to encode two fundamentally different stiffness characteristics promises to enable a single robot to be optimized for multiple divergent tasks simultaneously and this has been previously proposed with a variety of approaches including jamming-based designs. In this paper, we propose phase-changing metallic spines of various geometries to independently control specific directional stiffness parameters of soft robots, changing how they respond to their actuation inputs and external loads. We fabricate spine-like structures using a low melting point alloy (LMPA), enabling us to switch on and off the effects of the stiff metal structure of the overall robot's stiffness during use. Changing soft robot morphology in this manner will enable these robots to adapt to environments and tasks that require divergent motion and force/moment application capabilities.
more »
« less
Reconfigurable modular soft robots with modulating stiffness and versatile task capabilities
Abstract Soft robots have revolutionized machine interactions with humans and the environment to enable safe operations. The fixed morphology of these soft robots dictates their mechanical performance, including strength and stiffness, which limits their task range and applications. Proposed here are modular, reconfigurable soft robots with the capabilities of changing their morphology and adjusting their stiffness to perform versatile object handling and planar or spatial operational tasks. The reconfiguration and tunable interconnectivity between the elemental soft, pneumatically driven actuation units is made possible through integrated permanent magnets with coils. The proposed concept of attaching/detaching actuators enables these robots to be easily rearranged in various configurations to change the morphology of the system. While the potential for these actuators allows for arbitrary reconfiguration through parallel or serial connection on their four sides, we demonstrate here a configuration called ManusBot. ManusBot is a hand-like structure with digits and palm capable of individual actuation. The capabilities of this system are demonstrated through specific examples of stiffness modulation, variable payload capacity, and structure forming for enhanced and versatile object manipulation and operations. The proposed modular, soft robotic system with interconnecting capabilities significantly expands the versatility of operational tasks as well as the adaptability of handling objects of various shapes, sizes, and weights using a single system.
more »
« less
- Award ID(s):
- 2235647
- PAR ID:
- 10510903
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Smart Materials and Structures
- Volume:
- 33
- Issue:
- 6
- ISSN:
- 0964-1726
- Format(s):
- Medium: X Size: Article No. 065040
- Size(s):
- Article No. 065040
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soft robots, inspired by biological adaptability, can excel where rigid robots may falter and offer flexibility and safety for complex, unpredictable environments. In this paper, we present the Omnidirectional Bending Actuator (OBA), a soft robotic actuation module which is fabricated from off-the-shelf materials with easy scalability and consists of three pneumatic chambers. Distinguished by its streamlined manufacturing process, the OBA is capable of bending in all directions with a high force-to-weight ratio, potentially addressing a notable research gap in knit fabric actuators with multi-degree-of-freedom capabilities. We will present the design and fabrication of the OBA, examine its motion and force capabilities, and demonstrate its capability for stiffness modulation and its ability to maintain set configurations under loads. The mass of the entire actuation module is 278 g, with a range of omnidirectional bending up to 90.80°, a maximum tolerable pressure of 862 kPa, and a bending payload (block force) of 10.99 N, resulting in a force-to-weight ratio of 39.53 N/kg. The OBA’s cost-effective and simple fabrication, compact and lightweight structure, and capability to withstand high pressures present it as an attractive actuation primitive for applications demanding efficient and versatile soft robotic solutions.more » « less
-
Compliant grasping is crucial for secure handling objects not only vary in shapes but also in mechanical properties. We propose a novel soft robotic gripper with decoupled stiffness and shape control capability for performing adaptive grasping with minimum system complexity. The proposed soft fingers conform to object shapes facilitating the handling of objects of different types, shapes, and sizes. Each soft gripper finger has a length constraining mechanism (an articulable rigid backbone) and is powered by pneumatic muscle actuators. We derive the kinematic model of the gripper and use an empirical approach to simultaneously map input pressures to stiffness control and bending deformation of fingers. We use these mappings to demonstrate decoupled stiffness and shape (bending) control of various grasping configurations. We conduct tests to quantify the grip quality when holding objects as the gripper changes orientation, the ability to maintain the grip as the gripper is subjected to translational and rotational movements, and the external force perturbations required to release the object from the gripper under various stiffness and shape (bending) settings. The results validate the proposed gripper's performance and show how the decoupled stiffness and shape control can improve the grasping quality in soft robotic grippers.more » « less
-
null (Ed.)Compliant grasping is crucial for secure handling objects not only vary in shapes but also in mechanical properties. We propose a novel soft robotic gripper with decoupled stiffness and shape control capability for performing adaptive grasping with minimum system complexity. The proposed soft fingers conform to object shapes facilitating the handling of objects of different types, shapes, and sizes. Each soft gripper finger has a length constraining mechanism (an articulable rigid backbone) and is powered by pneumatic muscle actuators. We derive the kinematic model of the gripper and use an empirical approach to simultaneously map input pressures to stiffness control and bending deformation of fingers. We use these mappings to demonstrate decoupled stiffness and shape (bending) control of various grasping configurations. We conduct tests to quantify the grip quality when holding objects as the gripper changes orientation, the ability to maintain the grip as the gripper is subjected to translational and rotational movements, and the external force perturbations required to release the object from the gripper under various stiffness and shape (bending) settings. The results validate the proposed gripper’s performance and show how the decoupled stiffness and shape control can improve the grasping quality in soft robotic grippers.more » « less
-
null (Ed.)Traditional parallel-jaw grippers are insufficient for delicate object manipulation due to their stiffness and lack of dexterity. Other dexterous robotic hands often have bulky fingers, rely on complex time-varying cable drives, or are prohibitively expensive. In this paper, we introduce a novel low-cost compliant gripper with two centimeter-scaled 3-DOF delta robots using off-the-shelf linear actuators and 3D-printed soft materials. To model the kinematics of delta robots with soft compliant links, which diverge from typical rigid links, we train neural networks using a perception system. Furthermore, we analyze the delta robot’s force profile by varying the starting position in its workspace and measuring the resulting force from a push action. Finally, we demonstrate the compliance and dexterity of our gripper through six dexterous manipulation tasks involving small and delicate objects. Thus, we present the groundwork for creating modular multi-fingered hands that can execute precise and low-inertia manipulations.more » « less
An official website of the United States government
