skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Aemulus Project. VI. Emulation of Beyond-standard Galaxy Clustering Statistics to Improve Cosmological Constraints
Abstract There is untapped cosmological information in galaxy redshift surveys in the nonlinear regime. In this work, we use theAemulussuite of cosmologicalN-body simulations to construct Gaussian process emulators of galaxy clustering statistics at small scales (0.1–50h−1Mpc) in order to constrain cosmological and galaxy bias parameters. In addition to standard statistics—the projected correlation functionwp(rp), the redshift-space monopole of the correlation functionξ0(s), and the quadrupoleξ2(s)—we emulate statistics that include information about the local environment, namely the underdensity probability functionPU(s) and the density-marked correlation functionM(s). This extends the model ofAemulusIII for redshift-space distortions by including new statistics sensitive to galaxy assembly bias. In recovery tests, we find that the beyond-standard statistics significantly increase the constraining power on cosmological parameters of interest: includingPU(s) andM(s) improves the precision of our constraints on Ωmby 27%,σ8by 19%, and the growth of structure parameter,fσ8, by 12% compared to standard statistics. We additionally find that scales below ∼6h−1Mpc contain as much information as larger scales. The density-sensitive statistics also contribute to constraining halo occupation distribution parameters and a flexible environment-dependent assembly bias model, which is important for extracting the small-scale cosmological information as well as understanding the galaxy–halo connection. This analysis demonstrates the potential of emulating beyond-standard clustering statistics at small scales to constrain the growth of structure as a test of cosmic acceleration.  more » « less
Award ID(s):
2009291
PAR ID:
10510910
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
961
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We analyze clustering measurements of BOSS galaxies using a simulation-based emulator of two-point statistics. We focus on the monopole and quadrupole of the redshift-space correlation function, and the projected correlation function, at scales of 0.1 ∼ 60h−1Mpc. Although our simulations are based onwCDM with general relativity (GR), we include a scaling parameter of the halo velocity field,γf, defined as the amplitude of the halo velocity field relative to the GR prediction. We divide the BOSS data into three redshift bins. After marginalizing over other cosmological parameters, galaxy bias parameters, and the velocity scaling parameter, we findfσ8(z= 0.25) = 0.413 ± 0.031,fσ8(z= 0.4) = 0.470 ± 0.026, andfσ8(z= 0.55) = 0.396 ± 0.022. Compared with Planck observations using a flat Lambda cold dark matter model, our results are lower by 1.9σ, 0.3σ, and 3.4σ, respectively. These results are consistent with other recent simulation-based results at nonlinear scales, including weak lensing measurements of BOSS LOWZ galaxies, two-point clustering of eBOSS LRGs, and an independent clustering analysis of BOSS LOWZ. All these results are generally consistent with a combination of γ f 1 / 2 σ 8 0.75 . We note, however, that the BOSS data is well fit assuming GR, i.e.,γf= 1. We cannot rule out an unknown systematic error in the galaxy bias model at nonlinear scales, but near-future data and modeling will enhance our understanding of the galaxy–halo connection, and provide a strong test of new physics beyond the standard model. 
    more » « less
  2. Abstract Precise and accurate predictions of the halo mass function for cluster mass scales inwνCDM cosmologies are crucial for extracting robust and unbiased cosmological information from upcoming galaxy cluster surveys.Here, we present a halo mass function emulator for cluster mass scales (≳ 1013M/h) up to redshiftz= 2 with comprehensive support for the parameter space ofwνCDM cosmologies allowed by current data.Based on theAemulusνsuite of simulations, the emulator marks a significant improvement in the precision of halo mass function predictions by incorporating both massive neutrinos and non-standard dark energy equation of state models.This allows for accurate modeling of the cosmology dependence in large-scale structure and galaxy cluster studies.We show that the emulator, designed using Gaussian Process Regression, has negligible theoretical uncertainties compared to dominant sources of error in future cluster abundance studies.Our emulator is publicly available (https://github.com/DelonShen/aemulusnu_hmf), providing the community with a crucial tool for upcoming cosmological surveys such as LSST and Euclid. 
    more » « less
  3. Abstract We present cosmological results from the measurement of baryon acoustic oscillations (BAO) in galaxy, quasar and Lyman-αforest tracers from the first year of observations from the Dark Energy Spectroscopic Instrument (DESI), to be released in the DESI Data Release 1. DESI BAO provide robust measurements of the transverse comoving distance and Hubble rate, or their combination, relative to the sound horizon, in seven redshift bins from over 6 million extragalactic objects in the redshift range 0.1 <z< 4.2. To mitigate confirmation bias, a blind analysis was implemented to measure the BAO scales. DESI BAO data alone are consistent with the standard flat ΛCDM cosmological model with a matter density Ωm=0.295±0.015. Paired with a baryon density prior from Big Bang Nucleosynthesis and the robustly measured acoustic angular scale from the cosmic microwave background (CMB), DESI requiresH0=(68.52±0.62) km s-1Mpc-1. In conjunction with CMB anisotropies fromPlanckand CMB lensing data fromPlanckand ACT, we find Ωm=0.307± 0.005 andH0=(67.97±0.38) km s-1Mpc-1. Extending the baseline model with a constant dark energy equation of state parameterw, DESI BAO alone requirew=-0.99+0.15-0.13. In models with a time-varying dark energy equation of state parametrised byw0andwa, combinations of DESI with CMB or with type Ia supernovae (SN Ia) individually preferw0> -1 andwa< 0. This preference is 2.6σfor the DESI+CMB combination, and persists or grows when SN Ia are added in, giving results discrepant with the ΛCDM model at the 2.5σ, 3.5σor 3.9σlevels for the addition of the Pantheon+, Union3, or DES-SN5YR supernova datasets respectively. For the flat ΛCDM model with the sum of neutrino mass ∑mνfree, combining the DESI and CMB data yields an upper limit ∑mν< 0.072 (0.113) eV at 95% confidence for a ∑mν> 0 (∑mν> 0.059) eV prior. These neutrino-mass constraints are substantially relaxed if the background dynamics are allowed to deviate from flat ΛCDM. 
    more » « less
  4. Abstract We present a high-significance cross-correlation of CMB lensing maps from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) with luminous red galaxies (LRGs) from the Dark Energy Spectroscopic Instrument (DESI) Legacy Survey spectroscopically calibrated by DESI. We detect this cross-correlation at a significance of 38σ; combining our measurement with thePlanck Public Release 4 (PR4) lensing map, we detect the cross-correlation at 50σ. Fitting this jointly with the galaxy auto-correlation power spectrum to break the galaxy bias degeneracy withσ8, we perform a tomographic analysis in four LRG redshift bins spanning 0.4 ≤z≤ 1.0 to constrain the amplitude of matter density fluctuations through the parameter combinationS8×8m/ 0.3)0.4. Prior to unblinding, we confirm with extragalactic simulations that foreground biases are negligible and carry out a comprehensive suite of null and consistency tests. Using a hybrid effective field theory (HEFT) model that allows scales as small askmax= 0.6 h/ Mpc, we obtain a 3.3% constraint onS8×8m/ 0.3)0.4= 0.792+0.024-0.028from ACT data, as well as constraints onS8×(z) that probe structure formation over cosmic time.Our result is consistent with the early-universe extrapolation from primary CMB anisotropies measured byPlanck PR4 within 1.2σ. Jointly fitting ACT andPlanck lensing cross-correlations we obtain a 2.7% constraint ofS8×= 0.776+0.019-0.021, which is consistent with the Planck early-universe extrapolation within 2.1σ, with the lowest redshift bin showing the largest difference in mean. The latter may motivate further CMB lensing tomography analyses atz< 0.6 to assess the impact of potential systematics or the consistency of the ΛCDM model over cosmic time. 
    more » « less
  5. Aims. We combined the LOw-Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) second data release (DR2) catalogue with gravitational lensing maps from the cosmic microwave background (CMB) to place constraints on the bias evolution of LoTSS-detected radio galaxies, and on the amplitude of matter perturbations. Methods. We constructed a flux-limited catalogue from LoTSS DR2, and analysed its harmonic-space cross-correlation with CMB lensing maps fromPlanck,Cgk, as well as its auto-correlation,Cgg. We explored the models describing the redshift evolution of the large-scale radio galaxy bias, discriminating between them through the combination of bothCgkandCgg. Fixing the bias evolution, we then used these data to place constraints on the amplitude of large-scale density fluctuations, parametrised byσ8. Results. We report the significance of theCgksignal at a level of 26.6σ. We determined that a linear bias evolution of the formbg(z) =bg,D/D(z), whereD(z) is the growth rate, is able to provide a good description of the data, and we measuredbg,D= 1.41 ± 0.06 for a sample that is flux limited at 1.5 mJy, for scalesℓ< 250 forCgg, andℓ< 500 forCgk. At the sample’s median redshift, we obtainedb(z= 0.82) = 2.34 ± 0.10. Usingσ8as a free parameter, while keeping other cosmological parameters fixed to thePlanckvalues, we found fluctuations of σ8= 0.75−0.04+0.05. The result is in agreement with weak lensing surveys, and at 1σdifference withPlanckCMB constraints. We also attempted to detect the late-time-integrated Sachs-Wolfe effect with LOFAR data; however, with the current sky coverage, the cross-correlation with CMB temperature maps is consistent with zero. Our results are an important step towards constraining cosmology with radio continuum surveys from LOFAR and other future large radio surveys. 
    more » « less