skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coarsening droplets for frosting delay on hydrophilic slippery liquid‐infused porous surfaces
Abstract Frosting occurs due to the freezing of condensed water droplets on a supercooled surface. The nucleated frost propagates through interdroplet bridges and covers the entire surface, resulting from the deposition of highly supersaturated vapor surrounding tiny droplets. While inhibition of the formation of frost bridges is not possible, the propagation of frost can be delayed by effectively removing tiny droplets. Passive technologies, such as superhydrophobic surfaces (SHS) and hydrophobic slippery liquid‐infused porous surfaces (SLIPS), rely on static growth and direct contact with densely distributed droplets. However, use of these approaches in delaying frost propagation involves challenges, as the interdroplet distance remains small. Here, we report a new approach of spontaneous droplet movement on hydrophilic SLIPS to delay the formation of interdroplet frost bridges. Surface tension forces generated by the hydrophilic oil meniscus of a large water droplet efficiently pull neighboring droplets with a diameter of less than 20 μm from all directions. This causes a dynamic separation between water droplets and an adjacent frozen droplet. Such a process delays the formation and propagation of interdroplet frost bridges. Consequently, there is significant delay in frosting on hydrophilic SLIPS compared to those on SHS and hydrophobic SLIPS.  more » « less
Award ID(s):
2044348
PAR ID:
10510924
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Droplet
Volume:
3
Issue:
2
ISSN:
2731-4375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Preventing water droplets from transitioning to ice is advantageous for numerous applications. It is demonstrated that the use of certain phase‐change materials, which are in liquid state under ambient conditions and have melting point higher than the freezing point of water, referred herein as phase‐switching liquids (PSLs), can impede condensation–frosting lasting up to 300 and 15 times longer in bulk and surface infused state, respectively, compared to conventional surfaces under identical environmental conditions. The freezing delay is primarily a consequence of the release of trapped latent heat due to condensation, but is also affected by the solidified PSL surface morphology and its miscibility in water. Regardless of surface chemistry, PSL‐infused textured surfaces exhibit low droplet adhesion when operated below the corresponding melting point of the solidified PSLs, engendering ice and frost repellency even on hydrophilic substrates. Additionally, solidified PSL surfaces display varying degrees of optical transparency, can repel a variety of liquids, and self‐heal upon physical damage. 
    more » « less
  2. Water harvesting from air is desired for decentralized water supply wherever water is needed. When water vapor is condensed as droplets on a surface the unremoved droplets act as thermal barriers. A surface that can provide continual droplet-free areas for nucleation is favorable for condensation water harvesting. Here, we report a flow-separation condensation mode on a hydrophilic reentrant slippery liquid-infused porous surface (SLIPS) that rapidly removes droplets with diameters above 50 μm. The slippery reentrant channels lock the liquid columns inside and transport them to the end of each channel. We demonstrate that the liquid columns can harvest the droplets on top of the hydrophilic reentrant SLIPS at a high droplet removal frequency of 130 Hz/mm 2 . The sustainable flow separation without flooding increases the water harvesting rate by 110% compared to the state-of-the-art hydrophilic flat SLIPS. Such a flow-separation condensation approach paves a way for water harvesting. 
    more » « less
  3. Abstract Achieving mobile liquid droplets on solid surfaces is crucial for various practical applications, such as self‐cleaning and anti‐fouling coatings. The last two decades have witnessed remarkable progress in designing functional surfaces, including super‐repellent surfaces and lubricant‐infused surfaces, which allow droplets to roll/slide on the surfaces. However, it remains a challenge to enable droplet motion on hydrophilic solid surfaces. In this work, we demonstrate mobile droplets containing ionic surfactants on smooth hydrophilic surfaces that are charged similarly to surfactant molecules. The ionic surfactant‐laden droplets display ultra‐low contact angle and ultra‐low sliding angle simultaneously on the hydrophilic surfaces. The sliding of the droplet is enabled by the adsorbed surfactant ahead of three‐phase contact line, which is regulated by the electrostatic interaction between ionic surfactant and charged solid surface. The droplet can maintain its motion even when the hydrophilic surface has defects. Furthermore, we demonstrate controlled manipulation of ionic surfactant‐laden droplets on hydrophilic surfaces with different patterns. We envision that our simple technique for achieving mobile droplets on hydrophilic surfaces can pave the way to novel slippery surfaces for different applications. 
    more » « less
  4. Textured surfaces are commonly designed to preclude wetting by water. The design of surfaces that are not wetted by alcohols represents a considerable challenge given the low surface tension, viscosity, and density of these liquids. Herein, a hierarchically textured plastronic architecture that can suspend alcohol droplets in a metastable Cassie–Baxter regime is presented. As a result of microtexturation of the underlying stainless steel mesh, multiscale texturation derived from ZnO tetrapods, and surface functionalization with perfluorinated‐polyhedral oligomeric silsesquioxanes, the surfaces glide aliphatic alcohols, water, andn‐hexadecane. The design of surfaces not wetted by alcohols is particularly relevant to “point‐of‐care” environments. Because of the minimized interfacial contact areas, the textured surfaces further greatly inhibit ice nucleation at solid/liquid interfaces. High‐speed video imaging of the freezing and droplet impact shows that the textured surfaces delay ice nucleation by inhibiting heterogeneous nucleation, more effectively channel kinetic energy upon droplet impact to break up impinging droplets, and greatly limit frost formation. Once ice forms, its adhesion is substantially diminished by about three orders of magnitude as compared with planar substrates. The results demonstrate a scalable spray deposition method to generate surfaces for enabling the deterministic flow of liquids as well as inhibit ice formation. 
    more » « less
  5. The freezing process is significantly influenced by environmental factors and surface morphologies. At atmospheric pressure, a surface below the dew and freezing point temperature for a given relative humidity nucleates water droplets heterogeneously on the surface and then freezes. This paper examines the effect of nanostructured surfaces on the nucleation, growth, and subsequent freezing processes. Microsphere Photolithography (MPL) is used to pattern arrays of silica nanopillars. This technique uses a self-assembled lattice of microspheres to focus UV radiation to an array of photonic jets in photoresist. Silica is deposited using e-beam evaporation and lift-off. The samples were placed on a freezing stage at an atmospheric temperature of 22±0.5°C and relative humidities of 40% or 60%. The nanopillar surfaces had a significant effect on droplet dynamics and freezing behavior with freezing accelerated by an order of magnitude compared to a plain hydrophilic surface at 60% RH where the ice bridges need to cover a larger void for the propagation of the freezing front within the growing droplets. By pinning droplets, coalescence is suppressed for the nanopillared surface, altering the size distribution of droplets and accelerating the freezing process. The main mechanism affecting freezing characteristics was the pinning behavior of the nanopillared surface. 
    more » « less