skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perfect Polar Alignment of Parallel Beloamphiphile Layers: Improved Structural Design Bias Realized in Ferroelectric Crystals of the Novel “Methoxyphenyl Series of Acetophenone Azines”
Abstract An improved design is described for ferroelectric crystals and implemented with the “methoxyphenyl series” of acetophenone azines, (MeO−Ph, Y)‐azines with Y = F (1), Cl (2), Br (3), or I (4). The crystal structures of these azines exhibit polar stacking of parallel beloamphiphile monolayers (PBAMs). Azines 1, 3, and 4 form true racemates whereas chloroazine 2 crystallizes as a kryptoracemate. Azines 1–4 are helical because of the N−N bond conformation. In true racemates the molecules of opposite helicity (M and P) are enantiomers A(M) and A*(P) while in kryptoracemates they are diastereomers A(M) and B*(P). The stacking mode of PBAMs is influenced by halogen bonding, with 2–4 showcasing a kink due to directional interlayer halogen bonding, whereas fluoroazine 1demonstrates ideal polar stacking by avoiding it. Notably, (MeO−Ph, Y)‐azines display a stronger bias for dipole parallel alignment, attributed to the linearity of the biphenyl moiety as compared to the phenoxy series of (PhO, Y)‐azines with their non‐linear Ph−O−Ph moiety. The crystals of 1–4 all feature planar biphenyls and this synthon facilitates their crystallization through potent triple T‐contacts and enhances their nonlinear optical (NLO) performance by increasing conjugation length and affecting favorable chromophore conformations in the solids.  more » « less
Award ID(s):
2153206
PAR ID:
10510931
Author(s) / Creator(s):
; ;
Publisher / Repository:
Chemistry Europe
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
30
Issue:
26
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study expands and combines concepts from two of our earlier studies. One study reported the complementary halogen bonding and π-π charge transfer complexation observed between isomeric electron rich 4-N,N-dimethylaminophenylethynylpyridines and the electron poor halogen bond donor, 1-(3,5-dinitrophenylethynyl)-2,3,5,6-tetrafluoro-4-iodobenzene while the second study elaborated the ditopic halogen bonding of activated pyrimidines. Leveraging our understanding on the combination of these non-covalent interactions, we describe cocrystallization featuring ditopic halogen bonding and π-stacking. Specifically, red cocrystals are formed between the ditopic electron poor halogen bond donor 1-(3,5-dinitrophenylethynyl)-2,4,6-triflouro-3,5-diiodobenzene and each of electron rich pyrimidines 2- and 5-(4-N,N-dimethyl-aminophenylethynyl)pyrimidine. The X-ray single crystal structures of these cocrystals are described in terms of halogen bonding and electron donor-acceptor π-complexation. Computations confirm that the donor-acceptor π-stacking interactions are consistently stronger than the halogen bonding interactions and that there is cooperativity between π-stacking and halogen bonding in the crystals. 
    more » « less
  2. Abstract Co‐crystallization of a pyridyl‐containing arylethynyl (AE) moiety with 1,4‐diiodotetrafluorobenzene leads to unique, figure‐eight shaped helical motifs within the crystal lattice. A slight twist in the AE backbone allows each AE unit to simultaneously interact with haloarene units that are stacked on top of one another. Left‐handed (M) and right‐handed (P) helices are interspersed in a regular pattern throughout the crystal. The major driving forces for assembly are 1) halogen bonding between the pyridyl nitrogen atoms and the iodine substituents of the haloarene, with N⋅⋅⋅I distances between 2.81 and 2.84 Å, and 2) π‐π stacking of the haloarenes, with distances of approximately 3.57 Å between centroids. Halogen bonding and π‐π stacking not only work in concert, but also seem to mutually enhance one another. Calculations suggest that the presence of π‐π stacking modestly intensifies the halogen bonding interaction by <0.2 kcal/mol; likewise, halogen bonding to the haloarene enhances the π‐π stacking interaction by 0.59 kcal/mol. 
    more » « less
  3. Bis(triphenylsulfonium) tetrachloridomanganate(II), (C18H15S)2[MnCl4] (I), triphenylsulfonium tetrachloridoferrate(III), (C18H15S)[FeCl4] (II), and bis(triphenylsulfonium) tetrachloridocobaltate(II), (C18H15S)2[CoCl4] (III), crystallize in the monoclinic space groupsP21/n[(I) and (III)] andP21/c[(II)]. Compounds (I) and (III) each contain two crystallographically independent triphenylsulfonium (TPS+) cations in the asymmetric unit, whereas (II) has one. In all three compounds, the sulfonium centers adopt distorted trigonal–pyramidal geometries, with S—C bond lengths falling roughly in the 1.78–1.79 Å range and C—S—C angles observed at about 101 to 106°. The [MCl4]n−anions (M= Mn2+, Fe3+, Co2+;n= 2,1,2) adopt slightly distorted tetrahedral geometries, withM—Cl bond lengths in the 2.19–2.38 Å range and Cl—M—Cl angles of approximately 104–113°. Hirshfeld surface analyses shows that H...H and H...C contacts dominate the TPS+cation environments, whereas H...Cl and shortM—S interactions link each [MCl4]n−anion to the surrounding cations. In (I) and (III), inversion-centered π–π stacking further consolidates the crystal packing, while in (II) no π–π interactions are observed. 
    more » « less
  4. Abstract Reactions of (O=)PH(OCH2CH3)2and BrMg(CH2)mCH=CH2(4.9–3.2 equiv;m=4 (a), 5 (b), 6 (c)) give the dialkylphosphine oxides (O=)PH[(CH2)mCH=CH2]2(2 a–c; 77–81 % after workup), which are treated with NaH and then α,ω‐dibromides Br(CH2)nBr (0.49–0.32 equiv;n=8 (a′), 10 (b′), 12 (c′), 14 (d′)) to yield the bis(trialkylphosphine oxides) [H2C=CH(CH2)m]2P(=O)(CH2)n(O=)P[(CH2)mCH=CH2]2(3 ab′,3 bc′,3 cd′,3 ca′; 79–84 %). Reactions of3 bc′and3 ca′with Grubbs’ first‐generation catalyst and then H2/PtO2afford the dibridgehead diphosphine dioxides(4 bc′,4 ca′; 14–19 %,n′=2m+2);31P NMR spectra show two stereoisomeric species (ca. 70:30). Crystal structures of two isomers of the latter are obtained,out,out‐4 ca′and a conformer ofin,out‐4 ca′that features crossed chains, such that the (O=)P vectors appearout,out. Whereas4 bc′resists crystallization, a byproduct derived from an alternative metathesis mode, (CH2)12P(=O)(CH2)12(O=)P(CH2)12, as well as3 ab′and3 bc′, are structurally characterized. The efficiencies of other routes to dibridgehead diphosphorus compounds are compared. 
    more » « less
  5. Abstract Affinities of six anions (mesylate, acetate, trifluoroacetate,p‐toluenecarboxylate,p‐toluenesulfonate, and perfluorooctanoate) for three related Pt2+‐linked porphyrin nanocages were measured to probe the influence of different noncovalent recognition motifs (e. g., hydrogen bonding, electrostatics, π bonding) on anion binding. Two new hosts of M6L312+(1b) and M4L28+(2) composition (M=(en)Pt2+, L=(3‐py)4porphyrin) were prepared in a one‐pot synthesis and allowed comparison of hosts that differ in structure while maintaining similar N−H hydrogen‐bond donor ability. Comparisons of isostructural hosts that differ in hydrogen‐bonding ability were made between1band a related M6L312+nanoprism (1a, M=(tmeda)Pt2+) that lacks N−H groups. Considerable variation in association constants (K1=1.6×103 M−1to 1.3×108 M−1) and binding mode (exovs.endo) were found for different host–guest combinations. Strongest binding was seen betweenp‐toluenecarboxylate and1b, but surprisingly, association of this guest with1awas only slightly weaker despite the absence of NH⋅⋅⋅O interactions. The high affinity betweenp‐toluenecarboxylate and1acould be turned off by protonation, and this behavior was used to toggle between the binding of this guest and the environmental pollutant perfluorooctanoate, which otherwise has a lower affinity for the host. 
    more » « less