Non-exhaust emissions (e.g., automotive brake and tire wear) are quickly replacing exhaust emissions as the dominant traffic particulate pollutant. A significant fraction of the emissions are complex mixtures of organic compounds whose composition is not well known. Due to their unique health implications, knowledge of the composition of ultrafine particles (<100 nm in diameter) is of particular interest. Here we report on the size-selected organic composition of ultrafine particles nucleated during high brake temperature conditions generated using a custom brake dynamometer system and two common brake pad types. Using high resolution mass spectrometry, we find that the organic composition of these particles is dominated by species containing oxygen (CHO) and nitrogen (CHN/CHON). Many of these compounds are unsaturated and are attributed to the thermal degradation of resin material used in the pad formulation. Other abundant compounds include various glycols and amines, several of which are unequivocally identified and discussed as potential marker compounds for brake wear emissions. A significant fraction of highly oxidized, low volatility species observed in ultrafine particles could not be conclusively attributed to the thermal degradation of the brake material, indicating the presence of chemical pathways unique to the frictional heating process. This emphasizes the importance of using a brake dynamometer to generate brake wear particles as opposed to other strategies.
more »
« less
Contributions of non-tailpipe emissions to near-road PM2.5 and PM10: A chemical mass balance study
As the importance of non-tailpipe particles (NTP) over tailpipe emissions from urban traffic has been increasing, there is a need to evaluate NTP contributions to ambient particulate matter (PM) using representative source profiles. The Brake and Tire Wear Study conducted in Los Angeles, California in the winter of 2020 collected 64 PM2.5 and 64 PM10 samples from 32 pairs of downwind-upwind measurements at two near-road locations (I-5 in Anaheim and I-710 in Long Beach). These samples were characterized for inorganic and organic markers and, along with locally-developed brake wear, tire wear, and road dust source profiles, subject to source apportionment using the effective-variance chemical mass balance (EV-CMB) model. Model results highlighted the dominance of resuspended dust in both PM2.5 (23–33%) and PM10 (32–53%). Brake and tire wear contributed more to PM2.5 than tailpipe exhausts (diesel + gasoline) for I-5 (29–30% vs. 19–21%) while they were comparable for I-710 (15–17% vs. 15–19%). For PM10, the brake and tire wear contributions were 2–3 times the exhaust contributions. Different fleet compositions on and near I-5 and I-710 appeared to influence the relative importance of NTP and exhaust sources. The downwind-upwind differences in source contributions were often insignificant, consistent with small and/or nearly equal impacts of adjacent highway traffic emissions on the downwind and upwind sites. The utility of sole markers, such as barium and zinc, to predict brake and tire wear abundances in ambient PM is evaluated.
more »
« less
- Award ID(s):
- 2152258
- PAR ID:
- 10510955
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Environmental Pollution
- Volume:
- 335
- Issue:
- C
- ISSN:
- 0269-7491
- Page Range / eLocation ID:
- 122283
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motor vehicles are among the major sources of pollutants and greenhouse gases in urban areas and a transition to “zero emission vehicles” is underway worldwide. However, emissions associated with brake and tire wear will remain. We show here that previously unrecognized volatile and semi-volatile organic compounds, which have a similarity to biomass burning emissions are emitted during braking. These include greenhouse gases or, these classified as Hazardous Air Pollutants, as well as nitrogencontaining organics, nitrogen oxides and ammonia. The distribution and reactivity of these gaseous emissions are such that they can react in air to form ozone and other secondary pollutants with adverse health and climate consequences. Some of the compounds may prove to be unique markers of brake emissions. At higher temperatures, nucleation and growth of nanoparticles is also observed. Regions with high traffic, which are often disadvantaged communities, as well as commuters can be impacted by these emissions even after combustion-powered vehicles are phased out.more » « less
-
Tire wear particles (TWPs) are a major category of microplastic pollution produced by friction between tires and road surfaces. This non-exhaust particulate matter (PM) is transported through the air and with runoff leading to environmental pollution and health concerns. Here, we collected airborne PM along paved roads with different traffic volumes and speeds using Sigma-2 passive samplers. Particles entering the samplers deposit onto substrates for analysis, or, as we modified it, directly into small (60 ml) separatory funnels, which is particularly useful with high particle loads, where a density separation aids in isolating the microplastics. We quantified putative TWPs (∼10–80 µm) deposited on the substrates (primarily adhesive tape on glass slides) and in the funnels using stereomicroscopy. Putative TWP deposition rates (particles/cm 2 /day ± SD) at 5 m from the road were highest near a busy highway (324 ± 129), followed by a boulevard with moderate traffic (184 ± 93), and a slow traffic avenue (29 ± 7). We observed that deposition rates increased within proximity to the highway: 99 ± 54, 180 ± 88, and 340 ± 145 at 30, 15, and 5 m, respectively. We show that TWP abundances (i.e., deposition and mass concentration) increase with vehicle braking (driving behavior). We observed no differences ( p > 0.05) between the separatory funnel and adhesive tape collection methods. In addition, we were able to obtain FTIR spectra of TWPs (>10 µm) using µ-ATR-FTIR. Both deserve further scrutiny as novel sampling and analytical approaches. In a separate sampling campaign, we differentiated 1438 particles (∼1–80 µm) deposited on boron substrates into TWP, metal, mineral, and biogenic/organic classes with single particle SEM/EDX analysis based on morpho-textural-chemical classification and machine learning. The results revealed similar concentration trends with traffic (high > moderate > low), with the distribution of particle sources alike for the highway and the moderate road: TWPs (∼38–39%) > biogenic (∼34–35%) > minerals (∼23–26%), and metallic particles (∼2–3%). The low traffic road yielded a much different distribution: biogenic (65%) > minerals (27%) > TWPs (7%) > metallic particles (1%). Overall, this work provides much-needed empirical data on airborne TWPs along different types of roads.more » « less
-
Abstract Atmospheric particulate matter (PM) as light‐absorbing particles (LAPs) deposited to snow cover can result in early onset and rapid snow melting, challenging management of downstream water resources. We identified LAPs in 38 snow samples (water years 2013–2016) from the mountainous Upper Colorado River basin by comparing among laboratory‐measured spectral reflectance, chemical, physical, and magnetic properties. Dust sample reflectance, averaged over the wavelength range of 0.35–2.50 μm, varied by a factor of 1.9 (range, 0.2300–0.4444) and was suppressed mainly by three components: (a) carbonaceous matter measured as total organic carbon (1.6–22.5 wt. %) including inferred black carbon, natural organic matter, and carbon‐based synthetic, black road‐tire‐wear particles, (b) dark rock and mineral particles, indicated by amounts of magnetite (0.11–0.37 wt. %) as their proxy, and (c) ferric oxide minerals identified by reflectance spectroscopy and magnetic properties. Fundamental compositional differences were associated with different iron oxide groups defined by dominant hematite, goethite, or magnetite. These differences in iron oxide mineralogy are attributed to temporally varying source‐area contributions implying strong interannual changes in regional source behavior, dust‐storm frequency, and (or) transport tracks. Observations of dust‐storm activity in the western U.S. and particle‐size averages for all samples (median, 25 μm) indicated that regional dust from deserts dominated mineral‐dust masses. Fugitive contaminants, nevertheless, contributed important amounts of LAPs from many types of anthropogenic sources.more » « less
-
Tire wear particles (TWPs) are a major category of microplastic pollution produced by friction between tires and road surfaces. This non-exhaust particulate matter (PM) containing leachable toxic compounds is transported through the air and with stormwater runoff, leading to environmental pollution and human health concerns. In the present study, we collected airborne PM at varying distances (5, 15 and 30 m) along US Highway 278 in Oxford, Mississippi, USA, for ten consecutive days using Sigma-2 passive samplers. Particles (~ 1–80 μm) were passively collected directly into small (60 mL) wide-mouth separatory funnels placed inside the samplers. Particles were subsequently subjected to solvent extraction, and extracts were analyzed for TWP compounds by high resolution orbitrap mass spectrometry. This pilot study was focused solely on qualitative analyses to determine whether TWP compounds were present in this fraction of airborne PM. The abundance of airborne TWPs increased with proximity to the road with deposition rates (TWPs cm−2 day−1) of 23, 47, and 63 at 30 m, 15 m, and 5 m from the highway, respectively. Two common TWP compounds (6PPD-Q and 4-ADPA) were detected in all samples, except the field blank, at levels above their limits of detection, estimated at 2.90 and 1.14 ng L−1, respectively. Overall, this work suggests airborne TWPs may be a potential inhalation hazard, particularly for individuals and wildlife who spend extended periods outdoors along busy roadways. Research on the bioavailability of TWP compounds from inhaled TWPs is needed to address exposure risk.more » « less
An official website of the United States government

