The integration of layer-by-layer (LbL) and self-assembly methods has the potential to achieve precision assembly of nanocomposite materials. Knowledge of how nanoparticles move across and within stacked materials is critical for directing nanoparticle assembly. Here, we investigate nanoparticle self-assembly within two different LbL architectures: (1) a bilayer composed of two immiscible polymer thin-films, and (2) a bilayer composed of polymer and graphene that possesses a “hard-soft” interface. Polymer-grafted silver nanocubes (AgNCs) are employed as a model nanoparticle system for systematic experiments – characterizing both assembly rate and resulting morphologies – that examine how assembly is affected by the presence of an interface. We observe that polymer grafts can serve to anchor AgNCs at the bilayer interface and to decrease particle mobility, or can promote particle transfer between layers. We also find that polymer viscosity and polymer mixing parameters can be used as predictors of assembly rate and behavior. These results provide a pathway for designing more complex multilayered nanocomposites.
more »
« less
Brownian motion of soft particles near a fluctuating lipid bilayer
The dynamics of a soft particle suspended in a viscous fluid can be changed by the presence of an elastic boundary. Understanding the mechanisms and dynamics of soft–soft surface interactions can provide valuable insights into many important research fields, including biomedical engineering, soft robotics development, and materials science. This work investigates the anomalous transport properties of a soft nanoparticle near a visco-elastic interface, where the particle consists of a polymer assembly in the form of a micelle and the interface is represented by a lipid bilayer membrane. Mesoscopic simulations using a dissipative particle dynamics model are performed to examine the impact of micelle’s proximity to the membrane on its Brownian motion. Two different sizes are considered, which correspond to ≈10−20nm in physical units. The wavelengths typically seen by the largest micelle fall within the range of wavenumbers where the Helfrich model captures fairly well the bilayer mechanical properties. Several independent simulations allowed us to compute the micelle trajectories during an observation time smaller than the diffusive time scale (whose order of magnitude is similar to the membrane relaxation time of the largest wavelengths), this time scale being hardly accessible by experiments. From the probability density function of the micelle normal position with respect to the membrane, it is observed that the position remains close to the starting position during ≈0.05τd (where τd corresponds to the diffusion time), which allowed us to compare the negative excess of mean-square displacement (MSD) to existing theories. In that time range, the MSD exhibits different behaviors along parallel and perpendicular directions. When the micelle is sufficiently close to the bilayer (its initial distance from the bilayer equals approximately twice its gyration radius), the micelle motion becomes quickly subdiffusive in the normal direction. Moreover, the temporal evolution of the micelle MSD excess in the perpendicular direction follows that of a nanoparticle near an elastic membrane. However, in the parallel direction, the MSD excess is rather similar to that of a nanoparticle near a liquid interface.
more »
« less
- PAR ID:
- 10511037
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 159
- Issue:
- 24
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 244903
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Biological lipid membranes are generally asymmetric, not only with respect to the composition of the two membrane leaflets but also with respect to the state of mechanical stress on the two sides. Computer simulations of such asymmetric membranes pose unique challenges with respect to the choice of boundary conditions and ensemble in which such simulations are to be carried out. Here, we demonstrate an alternative to the usual choice of fully periodic boundary conditions: The membrane is only periodic in one direction, with free edges running parallel to the single direction of periodicity. In order to maintain bilayer asymmetry under these conditions, nanoscale “sticky tapes” are adhered to the membrane edges in order to prevent lipid flip-flop across the otherwise open edge. In such semi-periodic simulations, the bilayer is free to choose both its area and mean curvature, allowing for minimization of the bilayer elastic free energy. We implement these principles in a highly coarse-grained model and show how even the simplest examples of such simulations can reveal useful membrane elastic properties, such as the location of the monolayer neutral surface.more » « less
-
Abstract Manipulation of nanoparticles by light induced forces is widely used in nanotechnology and bioengineering. In normal cases, when a nanoparticle is illuminated by light waves, the transfer of momentum from light to the nanoparticle can push it to move along the light propagation direction. On the other hand, the lateral optical force can transport an object perpendicular to the light propagation direction, and the optical pulling force can attract an object toward the light source. Although these optical forces have drawn growing attention, in situ tuning of them is rarely explored. In this paper, tuning of both lateral optical forces and optical pulling forces is numerically demonstrated via a graphene/α‐phase molybdenum trioxide (α‐MoO3) bilayer structure. Under plane‐wave illumination, both the amplitude and direction of the optical forces exerted on a nanoparticle above this bilayer structure can be tuned in the mid‐infrared range. The underlying mechanism can be understood by studying the corresponding isofrequency contours of the hybrid plasmon‐phonon polaritons supported by the graphene/α‐MoO3bilayer. The analytical study using the dipole approximation method reproduces the numerical results, revealing the origin of the optical forces. This work opens a new avenue for engineering optical forces to manipulate various objects optically.more » « less
-
Abstract Mature faults with large cumulative slip often separate rocks with dissimilar elastic properties and show asymmetric damage distribution. Elastic contrast across such bimaterial faults can significantly modify various aspects of earthquake rupture dynamics, including normal stress variations, rupture propagation direction, distribution of ground motions, and evolution of off‐fault damage. Thus, analyzing elastic contrasts of bimaterial faults is important for understanding earthquake physics and related hazard potential. The effect of elastic contrast between isotropic materials on rupture dynamics is relatively well studied. However, most fault rocks are elastically anisotropic, and little is known about how the anisotropy affects rupture dynamics. We examine microstructures of the Sandhill Corner shear zone, which separates quartzofeldspathic rock and micaceous schist with wider and narrower damage zones, respectively. This shear zone is part of the Norumbega fault system, a Paleozoic, large‐displacement, seismogenic, strike‐slip fault system exhumed from middle crustal depths. We calculate elastic properties and seismic wave speeds of elastically anisotropic rocks from each unit having different proportions of mica grains aligned sub‐parallel to the fault. Our findings show that the horizontally polarized shear wave propagating parallel to the bimaterial fault (with fault‐normal particle motion) is the slowest owing to the fault‐normal compliance and therefore may be important in determining the elastic contrast that affects rupture dynamics in anisotropic media. Following results from subshear rupture propagation models in isotropic media, our results are consistent with ruptures preferentially propagated in the slip direction of the schist, which has the slower horizontal shear wave and larger fault‐normal compliance.more » « less
-
With the support of hybrid-kinetic simulations and analytic theory, we describe the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic waves in high- $$\beta$$ collisionless plasmas, with particular attention to their excitation of and reaction to kinetic micro-instabilities. The perpendicularly pressure balanced polarization of NP modes produces an excess of perpendicular pressure over parallel pressure in regions where the plasma $$\beta$$ is increased. For mode amplitudes $$|\delta B/B_0| \gtrsim 0.3$$ , this excess excites the mirror instability. Particle scattering off these micro-scale mirrors frustrates the nonlinear saturation of transit-time damping, ensuring that large-amplitude NP modes continue their decay to small amplitudes. At asymptotically large wavelengths, we predict that the mirror-induced scattering will be large enough to interrupt transit-time damping entirely, isotropizing the pressure perturbations and morphing the collisionless NP mode into the magnetohydrodynamic (MHD) entropy mode. In fast waves, a fluctuating pressure anisotropy drives both mirror and firehose instabilities when the wave amplitude satisfies $$|\delta B/B_0| \gtrsim 2\beta ^{-1}$$ . The induced particle scattering leads to delayed shock formation and MHD-like wave dynamics. Taken alongside prior work on self-interrupting Alfvén waves and self-sustaining ion-acoustic waves, our results establish a foundation for new theories of electromagnetic turbulence in low-collisionality, high- $$\beta$$ plasmas such as the intracluster medium, radiatively inefficient accretion flows and the near-Earth solar wind.more » « less
An official website of the United States government

