skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local and landscape scale woodland cover and diversification of agroecological practices shape butterfly communities in tropical smallholder landscapes
The conversion of biodiversity‐rich woodland to farmland and subsequent management has strong, often negative, impacts on biodiversity. In tropical smallholder agricultural landscapes, the impacts of agriculture on insect communities, both through habitat change and subsequent farmland management, is understudied. The use of agroecological practices has social and agronomic benefits for smallholders. Although ecological co‐benefits of agroecological practices are assumed, systematic empirical assessments of biodiversity effects of agroecological practices are missing, particularly in Africa.In Malawi, we assessed butterfly abundance, species richness, species assemblages and community life‐history traits on 24 paired woodland and smallholder‐managed farmland sites located across a gradient of woodland cover within a 1 km radius. We tested whether habitat type (woodland vs. farmland) and woodland cover at the landscape scale interactively shaped butterfly communities. Farms varied in the implementation of agroecological pest and soil management practices and flowering plant species richness.Farmland had lower butterfly abundances and approximately half the species richness than woodland. Farmland butterfly communities had, on average, a larger wingspan than woodland site communities. Surprisingly, higher woodland cover in the landscape had no effect on butterfly abundance in both habitats. In contrast, species richness was higher with higher woodland cover. Butterfly species assemblages were distinct between wood‐ and farmland and shifted across the woodland cover gradient.Farmland butterfly abundance, but not species richness, was higher with higher flowering plant species richness on farms. Farms with a higher number of agroecological pest management practices had a lower abundance of the dominant butterfly species, but not of rarer species. However, a larger number of agroecological soil management practices was associated with a higher abundance of rarer species. Synthesis and applications: We show that diversified agroecological soil practices and flowering plant richness enhanced butterfly abundance on farms. However, our results suggest that on‐farm measures cannot compensate for the negative effects of continued woodland conversion. Therefore, we call for more active protection of remaining African woodlands in tandem with promoting agroecological soil management practices and on‐farm flowering plant richness to conserve butterflies while benefiting smallholders.  more » « less
Award ID(s):
1852587
PAR ID:
10511054
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Data available via the Dryad Digital Repository https://doi. org/10.5061/dryad.5qftt dz9p (Vogel et al., 2023).
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
60
Issue:
8
ISSN:
0021-8901
Page Range / eLocation ID:
1659 to 1672
Subject(s) / Keyword(s):
agroecology butterflies conservation landscape change Miombo woodlands smallholder agriculture sub-Saharan Africa
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 1. In the tropics, smallholder farming characterizes some of the world’s most biodiverse landscapes. Agroecology as a pathway to sustainable agriculture has been proposed and implemented in sub-Saharan Africa, but the effects of agricultural practices in smallholder agriculture on biodiversity and ecosystem services are understudied. Similarly, the contribution of different landscape elements, such as shrub- or grassland cover, on biodiversity and ecosystem services to fields remains unknown. 2. We selected 24 villages situated in landscapes with varying landscape shrub- and grassland cover in Malawi. In each village, we assessed biodiversity of 8 taxa and ecosystem services in relation to crop type, shrub- and grassland cover and the number of agroecological pest management (APM) and agroecological soil management (ASM) on smallholder farm fields of different crop types (maize monoculture, maize-bean intercrop, and bean monoculture). 3. Increasing shrubland cover increased bee richness and altered carabid communities. Increased grassland cover decreased ant richness. Carabid richness increased in maize and intercrop but decreased in bean fields with increasing grassland cover. Carabid and parasitoid activity densities were higher in bean monocultures, but this was mediated by surrounding shrubland cover. Natural enemy activity in beans was especially high in landscapes with little surrounding shrubland. Possibly, this increased activity resulted in lower bean damage in monocultures compared to intercrop, whereas in maize, monocultures where more damaged, especially in landscapes high in grassland cover. In maize, APM was positively related to pest damage, and we find increased carabid activity and richness in fields with high maize damage. Increased ASM resulted in increased carabid richness and wasp activity density. 4. Synthesis and application: Our results suggest that maintaining biodiversity and ecosystem services on smallholder farms is not achievable with a “one size fits all” approach but should instead be adapted to the landscape context and the priorities of smallholders. Shrubland is important to maintain bee and carabid diversity, but legume cultivation beneficial to natural enemies could complement APM in landscapes with a lower shrubland cover. An increased number of ASM practices could lead to improved pest control whilst the effectiveness of APM needs to be re-evaluated. Keywords: agroecology, biodiversity, crop diversity, intercropping, landscape change, pest control, pollination, soil health. 
    more » « less
  2. Land-use and local field management affect pollinators, pest damage and ultimately crop yields. Agroecology is implemented as a sustainable alternative to conventional agricultural practices, but little is known about its potential for pollination and pest management. Sub-Saharan Africa is underrepresented in studies investigating the relative importance of pests and pollinators for crop productivity and how this might be influenced by surrounding landscapes or agroecological practices. In Malawi, we selected 24 smallholder farms differing in landscape-scale shrubland cover, implementation of manual pest removal as an indicator of an agroecological pest management practice, and the number of agroecological soil practices employed at the household level, such as mulching, intercropping and soil conservation tillage. We established pumpkin plots and assessed the abundance and richness of flower visitors and damage of flowers (florivory) caused by pest herbivores on flowers. Using a full-factorial hand pollination and exclusion experiment on each plot, we investigated the relative contribution of pollination and florivory to pumpkin yield. Increasing shrubland cover decreased honeybee abundance but increased the abundance and richness of non-honeybee visitors. Manual removal of herbivores considered to be pests reduced flower visitors, whereas more agroecological soil management practices increased flower visitors. Neither shrubland cover nor agroecological management affected florivory. Pollinator limitation, but not florivory, constrained pumpkin fruit set, and increasing visitor richness decreased the relative differences between hand- and animal-pollinated flowers. We recommend improved protection of shrubland habitats and increasing agroecological soil practices to promote pollinator richness on smallholder farms. 
    more » « less
  3. Non-crop vegetation, such as hedgerows and cover crops, are important on-farm diversification practices that support biodiversity and ecosystem services; however, information about their rates and patterns of adoption are scarce. We used satellite and aerial imagery coupled with machine learning classification to map the use of hedgerows/windbreaks and winter cover crops in California's Central Coast, a globally important agricultural area of intensive fresh produce production. We expected that adoption of both practices would be relatively low and unevenly distributed across the landscape, with higher levels of adoption found in marginal farmland and in less intensively cultivated areas where the pressure to remove non-crop vegetation may be lower. Our remote sensing classification revealed that only ~6% of farmland had winter cover crops in 2021 and 0.26% of farmland had hedgerows or windbreaks in 2018. Thirty-seven percent of ranch parcels had cover crops on at least 5% of the ranch while 22% of ranches had at least one hedgerow/windbreak. Nearly 16% of farmland had other annual winter crops, some of which could provide services similar to cover crops; however, 60% of farmland had bare soil over the winter study period, with the remainder of farmland classified as perennial crops or strawberries. Hotspot analysis showed significant areas of adoption of both practices in the hillier regions of all counties. Finally, qualitative interviews revealed that adoption patterns were likely driven by interrelated effects of topography, land values, and farming models, with organic, diversified farms implementing these practices in less ideal, lower-value farmland. This study demonstrates how remote sensing coupled with qualitative research can be used to map and interpret patterns of important diversification practices, with implications for tracking policy interventions and targeting resources to assist farmers motivated to expand adoption. 
    more » « less
  4. Saunders, M; Bell, J (Ed.)
    Abstract Butterfly abundances are declining globally, with meta‐analysis showing a rate of −2% per year. Agriculture contributes to butterfly decline through habitat loss and degradation. Prairie strips—strips of farmland actively restored to native perennial vegetation—are a conservation practice with the potential to mitigate biodiversity loss, but their impact on butterfly biodiversity is not known. Working within a 30‐year‐old experiment that varied land use intensity, from natural areas to croplands (maize–soy–wheat rotation), we introduced prairie strips to less intensely managed crop treatments. Treatments included conservation land, biologically based (organic) row crops with prairie strips, reduced input row crops with prairie strips, no‐till row crops and conventional row crops. We measured butterfly abundance and richness: (1) within prairie strips and (2) across the gradient of land use intensity at the plot level. Butterfly abundance was higher within prairie strips than in all other treatments. Across the land use intensity gradient at the plot level, the conservation land treatment had the highest abundance, treatments with prairie strips had intermediate levels and no‐till and conventional treatments had the lowest abundances. Also across entire plots, butterfly richness increased as land use intensity decreased. Treatments with prairie strips, which also had reduced land use intensity, had distinct butterfly communities as they harboured several butterfly species that were not found in other row crop treatments. In addition to the known effects of prairie strips on ecosystem services including erosion control and increased water quality, prairie strips can increase biodiversity in multifunctional landscapes. 
    more » « less
  5. Agricultural landscapes can be managed to protect biodiversity and maintain ecosystem services. One approach to achieve this is to restore native perennial vegetation within croplands. Where rowcrops have displaced prairie, as in the US Midwest, restoration of native perennial vegetation can align with crops in so called “prairie strips.” We tested the effect of prairie strips in addition to other management practices on a variety of taxa and on a suite of ecosystem services. To do so, we worked within a 33-year-old experiment that included treatments that varied methods of agricultural management across a gradient of land use intensity. In the two lowest intensity crop management treatments, we introduced prairie strips that occupied 5% of crop area. We addressed three questions: (1) What are the effects of newly established prairie strips on the spillover of biodiversity and ecosystem services into cropland? (2) How does time since prairie strip establishment affect biodiversity and ecosystem services? (3) What are the tradeoffs and synergies among biodiversity conservation, non-provisioning ecosystem services, and provisioning ecosystem services (crop yield) across a land use intensity gradient (which includes prairie strips)? Within prairie strip treatments, where sampling effort occurred within and at increasing distance from strips, dung beetle abundance, spider abundance and richness, active carbon, decomposition, and pollination decreased with distance from prairie strips, and this effect increased between the first and second year. Across the entire land use intensity gradient, treatments with prairie strips and reduced chemical inputs had higher butterfly abundance, spider abundance, and pollination services. In addition, soil organic carbon, butterfly richness, and spider richness increased with a decrease in land use intensity. Crop yield in one treatment with prairie strips was equal to that of the highest intensity management, even while including the area taken out of production. We found no effects of strips on ant biodiversity and greenhouse gas emissions (N 2 O and CH 4 ). Our results show that, even in early establishment, prairie strips and lower land use intensity can contribute to the conservation of biodiversity and ecosystem services without a disproportionate loss of crop yield. 
    more » « less