A long-standing open problem in the theory of hyperfinite equivalence
relations asks if the orbit equivalence relation generated by a Borel
action of a countable amenable group is hyperfinite. In this paper we prove
that this question always has a positive answer when the acting group is polycyclic,
and we obtain a positive answer for all free actions of a large class of
solvable groups including the Baumslag–Solitar group BS(1, 2) and the lamplighter
group Z2 ≀ Z. This marks the first time that a group of exponential
volume-growth has been verified to have this property. In obtaining this result
we introduce a new tool for studying Borel equivalence relations by extending
Gromov’s notion of asymptotic dimension to the Borel setting. We show that
countable Borel equivalence relations of finite Borel asymptotic dimension are
hyperfinite, and more generally we prove under a mild compatibility assumption
that increasing unions of such equivalence relations are hyperfinite. As
part of our main theorem, we prove for a large class of solvable groups that all
of their free Borel actions have finite Borel asymptotic dimension (and finite
dynamic asymptotic dimension in the case of a continuous action on a zero dimensional
space). We also provide applications to Borel chromatic numbers,
Borel and continuous Følner tilings, topological dynamics, and C∗-algebras.
more »
« less
This content will become publicly available on March 14, 2025
Structural, point-free, non-Hausdorff topological realization of Borel groupoid actions
We extend the Becker–Kechris topological realization and change-of-topology theorems for Polish group actions in several directions. For Polish group actions, we prove a single result that implies the original Becker–Kechris theorems, as well as Sami’s and Hjorth’s sharpenings adapted levelwise to the Borel hierarchy; automatic continuity of Borel actions via homeomorphisms and the equivalence of ‘potentially open’ versus ‘orbitwise open’ Borel sets. We also characterize ‘potentially open’ n-ary relations, thus yielding a topological realization theorem for invariant Borel first-order structures. We then generalize to groupoid actions and prove a result subsuming Lupini’s Becker–Kechris-type theorems for open Polish groupoids, newly adapted to the Borel hierarchy, as well as topological realizations of actions on fiberwise topological bundles and bundles of first-order structures.
Our proof method is new even in the classical case of Polish groups and is based entirely on formal algebraic properties of category quantifiers; in particular, we make no use of either metrizability or the strong Choquet game. Consequently, our proofs work equally well in the non-Hausdorff context, for open quasi-Polish groupoids and more generally in the point-free context, for open localic groupoids.
more »
« less
- Award ID(s):
- 2224709
- PAR ID:
- 10511130
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 12
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract It is a long-standing open question whether every Polish group that is not locally compact admits a Borel action on a standard Borel space whose associated orbit equivalence relation is not essentially countable. We answer this question positively for the class of all Polish groups that embed in the isometry group of a locally compact metric space. This class contains all non-archimedean Polish groups, for which we provide an alternative proof based on a new criterion for non-essential countability. Finally, we provide the following variant of a theorem of Solecki: every infinite-dimensional Banach space has a continuous action whose orbit equivalence relation is Borel but not essentially countable.more » « less
-
We characterize the completely determined Borel subsets of HYP as exactly the [Formula: see text] subsets of HYP. As a result, HYP believes there is a Borel well-ordering of the reals, that the Borel Dual Ramsey Theorem fails, and that every Borel d-regular bipartite graph has a Borel perfect matching, among other examples. Therefore, the Borel Dual Ramsey Theorem and several theorems of descriptive combinatorics are not theories of hyperarithmetic analysis. In the case of the Borel Dual Ramsey Theorem, this answers a question of Astor, Dzhafarov, Montalbán, Solomon and the third author.more » « less
-
null (Ed.)Answering a longstanding problem originating in Christensen’s seminal work on Haar null sets [ Math. Scand. 28 (1971), 124–128; Israel J. Math. 13 (1972), 255–260; Topology and Borel Structure. Descriptive Topology and Set Theory with Applications to Functional Analysis and Measure Theory , North-Holland Mathematics Studies, 10 (Notas de Matematica, No. 51). (North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1974), iii+133 pp], we show that a universally measurable homomorphism between Polish groups is automatically continuous. Using our general analysis of continuity of group homomorphisms, this result is used to calibrate the strength of the existence of a discontinuous homomorphism between Polish groups. In particular, it is shown that, modulo $\text{ZF}+\text{DC}$ , the existence of a discontinuous homomorphism between Polish groups implies that the Hamming graph on $\{0,1\}^{\mathbb{N}}$ has finite chromatic number.more » « less
-
For finitely generated groups G and H equipped with word metrics, a translation-like action of H on G is a free action where each element of H moves elements of G a bounded distance. Translation-like actions provide a geometric generalization of subgroup containment. Extending work of Cohen, we show that cocompact lattices in a general semisimple Lie group G that is not isogenous to SL(2,ℝ) admit translation-like actions by ℤ2. This result follows from a more general result. Namely, we prove that any cocompact lattice in the unipotent radical N of the Borel subgroup AN of G acts translation-like on any cocompact lattice in G. We also prove that for noncompact simple Lie groups G,H with H
more » « less