- Award ID(s):
- 1764247
- PAR ID:
- 10219616
- Date Published:
- Journal Name:
- Forum of Mathematics, Pi
- Volume:
- 7
- ISSN:
- 2050-5086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Several well-known open questions (such as: are all groups sofic/hyperlinear?) have a common form: can all groups be approximated by asymptotic homomorphisms into the symmetric groups $\text{Sym}(n)$ (in the sofic case) or the finite-dimensional unitary groups $\text{U}(n)$ (in the hyperlinear case)? In the case of $\text{U}(n)$ , the question can be asked with respect to different metrics and norms. This paper answers, for the first time, one of these versions, showing that there exist finitely presented groups which are not approximated by $\text{U}(n)$ with respect to the Frobenius norm $\Vert T\Vert _{\text{Frob}}=\sqrt{\sum _{i,j=1}^{n}|T_{ij}|^{2}},T=[T_{ij}]_{i,j=1}^{n}\in \text{M}_{n}(\mathbb{C})$ . Our strategy is to show that some higher dimensional cohomology vanishing phenomena implies stability , that is, every Frobenius-approximate homomorphism into finite-dimensional unitary groups is close to an actual homomorphism. This is combined with existence results of certain nonresidually finite central extensions of lattices in some simple $p$ -adic Lie groups. These groups act on high-rank Bruhat–Tits buildings and satisfy the needed vanishing cohomology phenomenon and are thus stable and not Frobenius-approximated.more » « less
-
In this paper, we develop the theory of residually finite rationally [Formula: see text] (RFR[Formula: see text]) groups, where [Formula: see text] is a prime. We first prove a series of results about the structure of finitely generated RFR[Formula: see text] groups (either for a single prime [Formula: see text], or for infinitely many primes), including torsion-freeness, a Tits alternative, and a restriction on the BNS invariant. Furthermore, we show that many groups which occur naturally in group theory, algebraic geometry, and in 3-manifold topology enjoy this residual property. We then prove a combination theorem for RFR[Formula: see text] groups, which we use to study the boundary manifolds of algebraic curves [Formula: see text] and in [Formula: see text]. We show that boundary manifolds of a large class of curves in [Formula: see text] (which includes all line arrangements) have RFR[Formula: see text] fundamental groups, whereas boundary manifolds of curves in [Formula: see text] may fail to do so.more » « less
-
We extend the Becker–Kechris topological realization and change-of-topology theorems for Polish group actions in several directions. For Polish group actions, we prove a single result that implies the original Becker–Kechris theorems, as well as Sami’s and Hjorth’s sharpenings adapted levelwise to the Borel hierarchy; automatic continuity of Borel actions via homeomorphisms and the equivalence of ‘potentially open’ versus ‘orbitwise open’ Borel sets. We also characterize ‘potentially open’ n-ary relations, thus yielding a topological realization theorem for invariant Borel first-order structures. We then generalize to groupoid actions and prove a result subsuming Lupini’s Becker–Kechris-type theorems for open Polish groupoids, newly adapted to the Borel hierarchy, as well as topological realizations of actions on fiberwise topological bundles and bundles of first-order structures. Our proof method is new even in the classical case of Polish groups and is based entirely on formal algebraic properties of category quantifiers; in particular, we make no use of either metrizability or the strong Choquet game. Consequently, our proofs work equally well in the non-Hausdorff context, for open quasi-Polish groupoids and more generally in the point-free context, for open localic groupoids.more » « less
-
We introduce the notion of [Formula: see text]-determinacy for [Formula: see text] a pointclass and [Formula: see text] an equivalence relation on a Polish space [Formula: see text]. A case of particular interest is the case when [Formula: see text] is the (left) shift-action of [Formula: see text] on [Formula: see text] where [Formula: see text] or [Formula: see text]. We show that for all shift actions by countable groups [Formula: see text], and any “reasonable” pointclass [Formula: see text], that [Formula: see text]-determinacy implies [Formula: see text]-determinacy. We also prove a corresponding result when [Formula: see text] is a subshift of finite type of the shift map on [Formula: see text].more » « less
-
We introduce and study Polish topologies on various spaces of countable enumerated groups, where an enumerated group is simply a group whose underlying set is the set of natural numbers. Using elementary tools and well-known examples from combinatorial group theory, combined with the Baire category theorem, we obtain a plethora of results demonstrating that several phenomena in group theory are generic. In effect, we provide a new topological framework for the analysis of various well known problems in group theory. We also provide a connection between genericity in these spaces, the word problem for finitely generated groups and model-theoretic forcing. Using these connections, we investigate a natural question raised by Osin: when does a certain space of enumerated groups contain a comeager isomorphism class? We obtain a sufficient condition that allows us to answer Osin’s question in the negative for the space of all enumerated groups and the space of left orderable enumerated groups. We document several open questions in connection with these considerations.