Abstract Recent work has demonstrated the potential of convolutional neural networks (CNNs) in producing low-computational cost surrogate models for the localization of mechanical fields in two-phase microstructures. The extension of the same CNNs to polycrystalline microstructures is hindered by the lack of an efficient formalism for the representation of the crystal lattice orientation in the input channels of the CNNs. In this paper, we demonstrate the benefits of using generalized spherical harmonics (GSH) for addressing this challenge. A CNN model was successfully trained to predict the local plastic velocity gradient fields in polycrystalline microstructures subjected to a macroscopically imposed loading condition. Specifically, it is demonstrated that the proposed approach improves significantly the accuracy of the CNN models when compared with the direct use of Bunge–Euler angles to represent the crystal orientations in the input channels. Since the proposed approach implicitly satisfies the expected crystal symmetries in the specification of the input microstructure to the CNN, it opens new research directions for the adoption of CNNs in addressing a broad range of polycrystalline microstructure design and optimization problems.
more »
« less
This content will become publicly available on April 1, 2025
Statistically conditioned polycrystal generation using denoising diffusion models
Synthetic microstructure generation algorithms have emerged as a key tool for enabling large ICME and Materials Informatics efforts. In particular, statistically conditioned generative models allow researchers to systematically explore complex design spaces encountered in microstructure design. In spite of the engineering importance of polycrystalline materials, generative frameworks for these systems remain extremely limited. This stunted development – in comparison to the N-phase microstructure generation problem – occurs because of the complexities inherent to the representation of the polycrystalline orientation fields. For example, these fields exhibit multiple crystal- and sample-level symmetries. In prior work, these difficulties have resulted in instabilities in deep generative models for polycrystalline microstructures. In this work, we propose the use of a Reduced-Order Generalized Spherical Harmonic (ROGSH) basis to address the challenge described above. The proposed approach accounts for the complex sample- and crystal-level symmetries, and produces well behaved and low dimensional representations whose space has a meaningful Euclidean measure. We then demonstrate the ROGSH basis’s remarkable ability to produce stable denoising diffusion models by using our recently established Local–Global generative framework to create visually realistic synthetic polycrystalline microstructures. Furthermore, we demonstrate that the generation process can be conditioned on both first- and second-order spatial statistics of the polycrystalline orientation fields.
more »
« less
- Award ID(s):
- 2027105
- PAR ID:
- 10511231
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Acta Materialia
- Volume:
- 267
- Issue:
- C
- ISSN:
- 1359-6454
- Page Range / eLocation ID:
- 119746
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Materials design aims to identify the material features that provide optimal properties for various engineering applications, such as aerospace, automotive, and naval. One of the important but challenging problems for materials design is to discover multiple polycrystalline microstructures with optimal properties. This paper proposes an end-to-end artificial intelligence (AI)-driven microstructure optimization framework for elastic properties of materials. In this work, the microstructure is represented by the Orientation Distribution Function (ODF) that determines the volume densities of crystallographic orientations. The framework was evaluated on two crystal systems, cubic and hexagonal, for Titanium (Ti) in Joint Automated Repository for Various Integrated Simulations (JARVIS) database and is expected to be widely applicable for materials with multiple crystal systems. The proposed framework can discover multiple polycrystalline microstructures without compromising the optimal property values and saving significant computational time.more » « less
-
null (Ed.)Generative Adversarial Networks (GANs), while widely successful in modeling complex data distributions, have not yet been sufficiently leveraged in scientific computing and design. Reasons for this include the lack of flexibility of GANs to represent discrete-valued image data, as well as the lack of control over physical properties of generated samples. We propose a new conditional generative modeling approach (InvNet) that efficiently enables modeling discrete-valued images, while allowing control over their parameterized geometric and statistical properties. We evaluate our approach on several synthetic and real world problems: navigating manifolds of geometric shapes with desired sizes; generation of binary two-phase materials; and the (challenging) problem of generating multi-orientation polycrystalline microstructures.more » « less
-
Microstructure-sensitive materials design has become popular among materials engineering researchers in the last decade because it allows the control of material performance through the design of microstructures. In this study, the microstructure is defined by an orientation distribution function. A physics-informed machine learning approach is integrated into microstructure design to improve the accuracy, computational efficiency, and explainability of microstructure-sensitive design. When data generation is costly and numerical models need to follow certain physical laws, machine learning models that are domain-aware perform more efficiently than conventional machine learning models. Therefore, a new paradigm called the physics-informed neural network (PINN) is introduced in the literature. This study applies the PINN to microstructure-sensitive modeling and inverse design to explore the material behavior under deformation processing. In particular, we demonstrate the application of PINN to small-data problems driven by a crystal plasticity model that needs to satisfy the physics-based design constraints of the microstructural orientation space. For the first problem, we predict the microstructural texture evolution of copper during a tensile deformation process as a function of initial texturing and strain rate. The second problem aims to calibrate the crystal plasticity parameters of the Ti-7Al alloy by solving an inverse design problem to match the PINN-predicted final texture prediction and the experimental data.more » « less
-
Microstructure-sensitive material design has become popular among materials engineering researchers in the last decade because it allows the control of material performance through the design of microstructures. In this study, the microstructure is defined by an orientation distribution function (ODF). A physics-informed machine learning approach is integrated into microstructure design to improve the accuracy, computational efficiency, and explainability of microstructure-sensitive design. When data generation is costly and numerical models need to follow certain physical laws, machine learning models that are domain-aware perform more efficiently than conventional machine learning models. Therefore, a new paradigm called Physics-Informed Neural Network (PINN) is introduced in the literature. This study applies the PINN to microstructure-sensitive modeling and inverse design to explore the material behavior under deformation processing. In particular, we demonstrate the application of PINN to small-data problems driven by a crystal plasticity model that needs to satisfy the physics-based design constraints of the microstructural orientation space. For the first problem, we predict the microstructural texture evolution of Copper during a tensile deformation process as a function of initial texturing and strain rate. The second problem aims to calibrate the crystal plasticity parameters of Ti-7Al alloy by solving an inverse design problem to match PINN-predicted final texture prediction and the experimental data.more » « less