Abstract Filamentary structures in neutral hydrogen (Hi) emission are well aligned with the interstellar magnetic field, so Hiemission morphology can be used to construct templates that strongly correlate with measurements of polarized thermal dust emission. We explore how the quantification of filament morphology affects this correlation. We introduce a new implementation of the Rolling Hough Transform (RHT) using spherical harmonic convolutions, which enables efficient quantification of filamentary structure on the sphere. We use this Spherical RHT algorithm along with a Hessian-based method to construct Hi-based polarization templates. We discuss improvements to each algorithm relative to similar implementations in the literature and compare their outputs. By exploring the parameter space of filament morphologies with the Spherical RHT, we find that the most informative Histructures for modeling the magnetic field structure are the thinnest resolved filaments. For this reason, we find a ∼10% enhancement in theB-mode correlation with polarized dust emission with higher-resolution Hiobservations. We demonstrate that certain interstellar morphologies can produce parity-violating signatures, i.e., nonzeroTBandEB, even under the assumption that filaments are locally aligned with the magnetic field. Finally, we demonstrate thatBmodes from interstellar dust filaments are mostly affected by the topology of the filaments with respect to one another and their relative polarized intensities, whereasEmodes are mostly sensitive to the shapes of individual filaments.
more »
« less
The role of the milling environment on the copper-catalysed mechanochemical synthesis of tolbutamide
Under controlled atmospheres the mechanochemical synthesis of tolbutamide is catalysed by Cu(ii), with CuCl acting as a pre-catalyst, activatedviaaerobic oxidation under milling. Use of aluminum jars results in mechanoinhibition of this process.
more »
« less
- PAR ID:
- 10511274
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- RSC Mechanochemistry
- Volume:
- 1
- ISSN:
- 2976-8683
- Page Range / eLocation ID:
- 289-295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present continued analysis of a sample of low-redshift iron low-ionization broad-absorption-line quasars (FeLoBALQs). Choi et al. presentedSimBALspectral analysis of broad-absorption-line (BAL) outflows in 50 objects. Leighly et al. analyzed the optical emission lines of 30 of those 50 objects and found that they are characterized by either a high accretion rate (LBol/LEdd> 0.3) or low accretion rate (0.03 <LBol/LEdd< 0.3). We report that the outflow velocity is inversely correlated with the BAL location among the high-accretion-rate objects, with the highest velocities observed in parsec-scale outflows. In contrast, the low-Eddington-ratio objects showed the opposite trend. We confirmed the known relationship between the outflow velocity andLBol/LEddand found that the scatter plausibly originates in the force multiplier (launch radius) in the low(high)-accretion-rate objects. A log volume filling factor between −6 and −4 was found in most outflows but was as high as −1 for low-velocity compact outflows. We investigated the relationship between the observed [Oiii] emission and that predicted from the BAL gas. We found that these could be reconciled if the emission-line covering fraction depends on the Seyfert type and BAL location. The difference between the predicted and observed [Oiii] luminosity is correlated with the outflow velocity, suggesting that [Oiii] emission in high-Eddington-ratio objects may be broad and hidden under Feiiemission. We suggest that the physical differences in the outflow properties as a function of location in the quasar and accretion rate point to different formation, acceleration, and confinement mechanisms for the two FeLoBALQ types.more » « less
-
Abstract As part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey, we present the UV metal absorption features in the circumgalactic medium (CGM) near the Higas disk (<4.5RHI) of 31 nearby galaxies through quasar absorption-line spectroscopy. Of the ions under study, Siiiiλ1206 was most frequently detected (18 of 31 sight lines), while Ciiλ1334 and Siiiλ1260 were detected in 17 and 15 of 31 sight lines, respectively. Many components were consistent with photoionization equilibrium models; most of the cold and cool gas phase clouds were found to have lengths smaller than 2 kpc. Sight lines with smaller impact parameters (ρ) normalized by the galaxy’s virial radius (Rvir) and Hiradius (RHI) tend to have more components and larger rest-frame equivalent widths (Wr) than those that probe the CGM at larger radii. In particular, we find that the location of metals are better traced byρ/RHIrather than the traditionalρ/Rvir. Larger covering fractions are found closer to galaxies, with a radial decline that depends on theWrlimit used. Our results provide new insights into the spatial distribution of metals around the Hidisks of low-redshift galaxies.more » « less
-
Abstract Galaxy-cluster gravitational lenses enable the study of faint galaxies even at large lookback times, and, recently, time-delay constraints on the Hubble constant. There have been few tests, however, of lens model predictions adjacent to the critical curve (≲8″) where the magnification is greatest. In a companion paper, we use the GLAFIC lens model to constrain the BalmerL–σrelation for Hiiregions in a galaxy at redshiftz= 1.49 strongly lensed by the MACS J1149 galaxy cluster. Here we perform a detailed comparison between the predictions of 10 cluster lens models that employ multiple modeling assumptions with our measurements of 11 magnified, giant Hiiregions. We find that that the models predict magnifications an average factor of 6.2 smaller, a ∼2σtension, than that inferred from the Hiiregions under the assumption that they follow the low-redshiftL–σrelation. To evaluate the possibility that the lens model magnifications are strongly biased, we next consider the flux ratios among knots in three images of Sp1149, and find that these are consistent with model predictions. Moreover, while the mass-sheet degeneracy could in principle account for a factor of ∼6 discrepancy in magnification, the value ofH0inferred from SN Refsdal’s time delay would become implausibly small. We conclude that the lens models are not likely to be highly biased, and that instead the Hiiregions in Sp1149 are substantially more luminous than the low-redshift BalmerL–σrelation predicts.more » « less
-
Abstract The Airborne Infrared Spectrometer (AIR-Spec) was commissioned during the 2017 total solar eclipse, when it observed five infrared coronal emission lines from a Gulfstream V research jet owned by the National Science Foundation and operated by the National Center for Atmospheric Research. The second AIR-Spec research flight took place during the 2019 July 2 total solar eclipse across the south Pacific. The 2019 eclipse flight resulted in seven minutes of observations, during which the instrument measured all four of its target emission lines: Sxi1.393μm, Six1.431μm, Sxi1.921μm, and Feix2.853μm. The 1.393μm Sxiline was detected for the first time, and probable first detections were made of Sixi1.934μm and Fex1.947μm. The 2017 AIR-Spec detection of Feixwas confirmed and the first observations were made of the Feixline intensity as a function of solar radius. Telluric absorption features were used to calibrate the wavelength mapping, instrumental broadening, and throughput of the instrument. AIR-Spec underwent significant upgrades in preparation for the 2019 eclipse observation. The thermal background was reduced by a factor of 30, providing a 5.5× improvement in signal-to-noise ratio, and the postprocessed pointing stability was improved by a factor of 5 to <10″ rms. In addition, two imaging artifacts were identified and resolved, improving the spectral resolution and making the 2019 data easier to interpret.more » « less
An official website of the United States government

