skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post-Polymerization Modification of Biocompatible Branched Polyglycidol
The modification of branching in polyglycidol is of great interest for the synthesis of novel polymeric biomaterials. We present the synthesis of novel ratio-controlled amino-oxy and keto functionalized branched polyglycidols. The biocompatibility and chemospecificity of the amino-oxy functional group make it particularly well suited for applications in bioconjugation, drug delivery and tissue engineering. Amino-oxy functionalized branched polyglycidol can serve as a critical building block for the synthesis of innovative biocompatible degradable hydrogels that are injectable. Ratio-controlled amino-oxy functionalized species were obtained by controlling the ratio of N-hydroxy phthalimide to the hydroxyl groups attached to the polyether backbone. A similar strategy was utilized to obtain ratio-controlled keto functionalized branched polyglycidols. This unique feature will allow for the tailoring of this branched PEG-like structural motif for the synthesis of novel biomaterials with tailored biochemical and biomechanical properties.  more » « less
Award ID(s):
2200484
PAR ID:
10511275
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Editor(s):
American_Society_for_Microbiology
Publisher / Repository:
Annual Biomedical Research Conference for Minoritized Scientist (ABRCMS) abstract Archive
Date Published:
Edition / Version:
2023
Subject(s) / Keyword(s):
ABRCMS 2023 abstract.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The post-polymerization modification of polyglycidol is of great interest for the synthesis of functional polyether-based polymeric biomaterials. We present a degradable polyglycidol-based hydrogel system using oxime click chemistry by employing a ketone-functionalized and an amino-oxy functionalized branched polyglycidol. Ratio-controlled amino-oxy functionalized species were obtained by controlling the ratio of N-hydroxy phthalimide to the hydroxyl groups attached to the polyether backbone. A similar strategy was utilized to obtain ratio-controlled keto functionalized branched polyglycidols. This unique feature will allow for the tailoring of this branched PEG-like structural motif for the synthesis of novel biomaterials with tailored biochemical and biomechanical properties. The bio-orthogonal nature of this crosslinking reaction makes these hydrogels an attractive option for load-bearing tissue engineering. Our hydrogel synthesis methodology allows for control over the properties of the resulting polymeric network, based upon the ratio between the keto and the amino-oxy functionalities. The potential of these polyether-based networks to serve as a successful delivery platform was assessed by studying their swelling and degradation profiles. Biocompatibility and cytotoxicity of the gels were studied using NIH 3T3 cells. Our preliminary results highlighting the potential of our hydrogels platform will be discussed. 
    more » « less
  2. null (Ed.)
    With PEG-like properties, such as hydrophilicity and stealth effect against protein absorption, oligo(ethylene glycol) (OEG)-functionalized polypeptides have emerged as a new class of biomaterials alternative to PEG with polypeptide-like properties. Synthesis of this class of materials, however, has been demonstrated very challenging, as the synthesis and purification of OEG-functionalized N -carboxyanhydrides (OEG-NCAs) in high purity, which is critical for the success in polymerization, is tedious and often results in low yield. OEG-functionalized polypeptides are therefore only accessible to a few limited labs with expertise in this specialized NCA chemistry and materials. Here, we report the controlled synthesis of OEG-functionalized polypeptides in high yield directly from the OEG-functionalized amino acids via easy and reproducible polymerization of non-purified OEG-NCAs. The prepared amphiphilic block copolypeptides can self-assemble into narrowly dispersed nanoparticles in water, which show properties suitable for drug delivery applications. 
    more » « less
  3. Abstract Enzymes from secondary metabolic pathways possess broad potential for the selective synthesis of complex bioactive molecules. However, the practical application of these enzymes for organic synthesis is dependent on the development of efficient, economical, operationally simple, and well‐characterized systems for preparative scale reactions. We sought to bridge this knowledge gap for the selective biocatalytic synthesis of β‐hydroxy‐α‐amino acids, which are important synthetic building blocks. To achieve this goal, we demonstrated the ability of ObiH, anl‐threonine transaldolase, to achieve selective milligram‐scale synthesis of a diverse array of non‐standard amino acids (nsAAs) using a scalable whole cell platform. We show how the initial selectivity of the catalyst is high and how the diastereomeric ratio of products decreases at high conversion due to product re‐entry into the catalytic cycle. ObiH‐catalyzed reactions with a variety of aromatic, aliphatic and heterocyclic aldehydes selectively generated a panel of β‐hydroxy‐α‐amino acids possessing broad functional‐group diversity. Furthermore, we demonstrated that ObiH‐generated β‐hydroxy‐α‐amino acids could be modified through additional transformations to access important motifs, such as β‐chloro‐α‐amino acids and substituted α‐keto acids. 
    more » « less
  4. A chemical method suitable for the synthesis of RNAs containing modifications such as N4-acetylcytidine (ac4C) that are unstable under the basic and nucleophilic conditions used by standard RNA synthesis methods is described. The method uses the 4-((t-butyldimethylsilyl)oxy)-2-methoxybutanoyl (SoM) group for the protection of exo-amino groups of nucleobases and the 4-((t-butyldimethylsilyl)oxy)-2-((aminophosphaneyl)oxy)butanoyl (SoA) group as the linker for solid phase synthesis. RNA cleavage and amino deprotection are achieved using fluoride under the same conditions used for the removal of the 2′-OH silyl protecting groups. Using the method, a wide range of electrophilic and base-sensitive groups including those that play structural and regulatory roles in biological systems and those that are artificially designed for various purposes are expected to be able to be incorporated into any position of any RNA sequences. As a proof of concept, a 26-mer RNA containing the highly sensitive ac4C epitranscriptomic modification was successfully synthesized and purified with RP HPLC. MALDI MS analysis indicated that the ac4C modification is completely stable under the fluoride deprotection conditions. The sensitive RNA synthesis method is expected to be able to overcome the long lasting obstacle of accessing various modified sensitive RNAs to projects in areas such as epitranscriptomics, molecular biology and the development of nucleic acid therapeutics. 
    more » « less
  5. Abstract α‐Amino nitriles are versatile structural motifs in a variety of biologically active compounds and pharmaceuticals and they serve as valuable building blocks in synthesis. The preparation of α‐ and β‐functionalized α‐amino nitriles from readily available scaffolds, however, remains challenging. Herein is reported a novel dual catalytic photoredox/copper‐catalyzed chemo‐ and regioselective radical carbocyanation of 2‐azadienes to access functionalized α‐amino nitriles by using redox‐active esters (RAEs) and trimethylsilyl cyanide. This cascade process employs a broad scope of RAEs and provides the corresponding α‐amino nitrile building blocks in 50–95 % yields (51 examples, regioselectivity >95 : 5). The products were transformed into prized α‐amino nitriles and α‐amino acids. Mechanistic studies suggest a radical cascade coupling process. 
    more » « less