skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 22, 2025

Title: Sensitive RNA Synthesis Using Fluoride-Cleavable Groups for Linking and Amino Protection
A chemical method suitable for the synthesis of RNAs containing modifications such as N4-acetylcytidine (ac4C) that are unstable under the basic and nucleophilic conditions used by standard RNA synthesis methods is described. The method uses the 4-((t-butyldimethylsilyl)oxy)-2-methoxybutanoyl (SoM) group for the protection of exo-amino groups of nucleobases and the 4-((t-butyldimethylsilyl)oxy)-2-((aminophosphaneyl)oxy)butanoyl (SoA) group as the linker for solid phase synthesis. RNA cleavage and amino deprotection are achieved using fluoride under the same conditions used for the removal of the 2′-OH silyl protecting groups. Using the method, a wide range of electrophilic and base-sensitive groups including those that play structural and regulatory roles in biological systems and those that are artificially designed for various purposes are expected to be able to be incorporated into any position of any RNA sequences. As a proof of concept, a 26-mer RNA containing the highly sensitive ac4C epitranscriptomic modification was successfully synthesized and purified with RP HPLC. MALDI MS analysis indicated that the ac4C modification is completely stable under the fluoride deprotection conditions. The sensitive RNA synthesis method is expected to be able to overcome the long lasting obstacle of accessing various modified sensitive RNAs to projects in areas such as epitranscriptomics, molecular biology and the development of nucleic acid therapeutics.  more » « less
Award ID(s):
1954041 2117318
PAR ID:
10559357
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
RSC and ACS
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over a hundred non-canonical nucleotides have been found in DNA and RNA. Many of them are sensitive toward nucleophiles. Because known oligonucleotide synthesis technologies require nucleophilic conditions for deprotection, currently there is no suitable technology for their synthesis. The recently disclosed method regarding the use of 1,3-dithian-2-yl-methyl (Dim) for phosphate protection and 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) for amino protection can solve the problem. With Dim–Dmoc protection, oligodeoxynucleotide (ODN) deprotection can be achieved with NaIO 4 followed by aniline. Some sensitive groups have been determined to be stable under these conditions. Besides serving as a base, aniline also serves as a nucleophilic scavenger, which prevents deprotection side products from reacting with ODN. For this reason, excess aniline is needed. Here, we report the use of alkyl Dim (aDim) and alkyl Dmoc (aDmoc) for ODN synthesis. With aDim–aDmoc protection, deprotection is achieved with NaIO 4 followed by K 2 CO 3 . No nucleophilic scavenger such as aniline is needed. Over 10 ODNs including one containing the highly sensitive N 4 -acetylcytidine were synthesized. Work on extending the method for sensitive RNA synthesis is in progress. 
    more » « less
  2. Abstract This protocol describes a method for the incorporation of sensitive functional groups into oligodeoxynucleotides (ODNs). The nucleophile‐sensitive epigeneticN4‐acetyldeoxycytosine (4acC) DNA modification is used as an example, but other sensitive groups can also be incorporated, e.g., alkyl halide, α‐haloamide, alkyl ester, aryl ester, thioester, and chloropurine groups, all of which are unstable under the basic and nucleophilic deprotection and cleavage conditions used in standard ODN synthesis methods. The method uses a 1,3‐dithian‐2‐yl‐methoxycarbonyl (Dmoc) group that carries a methyl group at the carbon of the methoxy moiety (meDmoc) for the protection of exo‐amines of nucleobases. The growing ODN is anchored to a solid support via a Dmoc linker. With these protecting and linking strategies, ODN deprotection and cleavage are achieved without using any strong bases and nucleophiles. Instead, they can be carried out under nearly neutral non‐nucleophilic oxidative conditions. To increase the length of ODNs that can be synthesized using the meDmoc method, the protocol also describes the synthesis of a PEGylated Dmoc (pDmoc) phosphoramidite. With some of the nucleotides being incorporated with pDmoc‐CE phosphoramidite, the growing ODN on the solid support carries PEG moieties and becomes more soluble, thus enabling longer ODN synthesis. The ODN synthesis method described in this protocol is expected to make many sensitive ODNs that are difficult to synthesize accessible to researchers in multiple areas, such as epigenetics, nanopore sequencing, nucleic acid‐protein interactions, antisense drug development, DNA alkylation carcinogenesis, and DNA nanotechnology. © 2024 Wiley Periodicals LLC. Basic Protocol: Sensitive ODN synthesis Support Protocol 1: Synthesis of meDmoc‐CE phosphoramidites Support Protocol 2: Synthesis of a pDmoc‐CE phosphoramidite 
    more » « less
  3. American_Society_for_Microbiology (Ed.)
    The modification of branching in polyglycidol is of great interest for the synthesis of novel polymeric biomaterials. We present the synthesis of novel ratio-controlled amino-oxy and keto functionalized branched polyglycidols. The biocompatibility and chemospecificity of the amino-oxy functional group make it particularly well suited for applications in bioconjugation, drug delivery and tissue engineering. Amino-oxy functionalized branched polyglycidol can serve as a critical building block for the synthesis of innovative biocompatible degradable hydrogels that are injectable. Ratio-controlled amino-oxy functionalized species were obtained by controlling the ratio of N-hydroxy phthalimide to the hydroxyl groups attached to the polyether backbone. A similar strategy was utilized to obtain ratio-controlled keto functionalized branched polyglycidols. This unique feature will allow for the tailoring of this branched PEG-like structural motif for the synthesis of novel biomaterials with tailored biochemical and biomechanical properties. 
    more » « less
  4. The stepwise synthesis of monodisperse polyethylene glycols (PEGs) and their derivatives usually involves using an acid-labile protecting group such as DMTr and coupling the two PEG moieties together under basic Williamson ether formation conditions. Using this approach, each elongation of PEG is achieved in three steps – deprotection, deprotonation and coupling – in two pots. Here, we report a more convenient approach for PEG synthesis featuring the use of a base-labile protecting group such as the phenethyl group. Using this approach, each elongation of PEG can be achieved in two steps – deprotection and coupling – in only one pot. The deprotonation step, and the isolation and purification of the intermediate product after deprotection using existing approaches are no longer needed when the one-pot approach is used. Because the stepwise PEG synthesis usually requires multiple PEG elongation cycles, the new PEG synthesis method is expected to significantly lower PEG synthesis cost. 
    more » « less
  5. The post-polymerization modification of polyglycidol is of great interest for the synthesis of functional polyether-based polymeric biomaterials. We present a degradable polyglycidol-based hydrogel system using oxime click chemistry by employing a ketone-functionalized and an amino-oxy functionalized branched polyglycidol. Ratio-controlled amino-oxy functionalized species were obtained by controlling the ratio of N-hydroxy phthalimide to the hydroxyl groups attached to the polyether backbone. A similar strategy was utilized to obtain ratio-controlled keto functionalized branched polyglycidols. This unique feature will allow for the tailoring of this branched PEG-like structural motif for the synthesis of novel biomaterials with tailored biochemical and biomechanical properties. The bio-orthogonal nature of this crosslinking reaction makes these hydrogels an attractive option for load-bearing tissue engineering. Our hydrogel synthesis methodology allows for control over the properties of the resulting polymeric network, based upon the ratio between the keto and the amino-oxy functionalities. The potential of these polyether-based networks to serve as a successful delivery platform was assessed by studying their swelling and degradation profiles. Biocompatibility and cytotoxicity of the gels were studied using NIH 3T3 cells. Our preliminary results highlighting the potential of our hydrogels platform will be discussed. 
    more » « less