skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Construction of a Dirichlet form on Metric Measure Spaces of Controlled Geometry
Abstract Given a compact doubling metric measure spaceXthat supports a 2-Poincaré inequality, we construct a Dirichlet form on$$N^{1,2}(X)$$ N 1 , 2 ( X ) that is comparable to the upper gradient energy form on$$N^{1,2}(X)$$ N 1 , 2 ( X ) . Our approach is based on the approximation ofXby a family of graphs that is doubling and supports a 2-Poincaré inequality (see [20]). We construct a bilinear form on$$N^{1,2}(X)$$ N 1 , 2 ( X ) using the Dirichlet form on the graph. We show that the$$\Gamma $$ Γ -limit$$\mathcal {E}$$ E of this family of bilinear forms (by taking a subsequence) exists and that$$\mathcal {E}$$ E is a Dirichlet form onX. Properties of$$\mathcal {E}$$ E are established. Moreover, we prove that$$\mathcal {E}$$ E has the property of matching boundary values on a domain$$\Omega \subseteq X$$ Ω X . This construction makes it possible to approximate harmonic functions (with respect to the Dirichlet form$$\mathcal {E}$$ E ) on a domain inXwith a prescribed Lipschitz boundary data via a numerical scheme dictated by the approximating Dirichlet forms, which are discrete objects.  more » « less
Award ID(s):
2054960
PAR ID:
10511334
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Potential Analysis
Volume:
62
Issue:
3
ISSN:
0926-2601
Format(s):
Medium: X Size: p. 485-508
Size(s):
p. 485-508
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let$$\phi $$ ϕ be a positive map from the$$n\times n$$ n × n matrices$$\mathcal {M}_n$$ M n to the$$m\times m$$ m × m matrices$$\mathcal {M}_m$$ M m . It is known that$$\phi $$ ϕ is 2-positive if and only if for all$$K\in \mathcal {M}_n$$ K M n and all strictly positive$$X\in \mathcal {M}_n$$ X M n ,$$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$ ϕ ( K X - 1 K ) ϕ ( K ) ϕ ( X ) - 1 ϕ ( K ) . This inequality is not generally true if$$\phi $$ ϕ is merely a Schwarz map. We show that the corresponding tracial inequality$${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$ Tr [ ϕ ( K X - 1 K ) ] Tr [ ϕ ( K ) ϕ ( X ) - 1 ϕ ( K ) ] holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results. 
    more » « less
  2. Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in$$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$$ Quasi - NP = NTIME [ n ( log n ) O ( 1 ) ] and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$$\mathcal { C}$$ C , by showing that$$\mathcal { C}$$ C admits non-trivial satisfiability and/or#SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial#SAT algorithm for a circuit class$${\mathcal C}$$ C . Say that a symmetric Boolean functionf(x1,…,xn) issparseif it outputs 1 onO(1) values of$${\sum }_{i} x_{i}$$ i x i . We show that for every sparsef, and for all “typical”$$\mathcal { C}$$ C , faster#SAT algorithms for$$\mathcal { C}$$ C circuits imply lower bounds against the circuit class$$f \circ \mathcal { C}$$ f C , which may bestrongerthan$$\mathcal { C}$$ C itself. In particular:#SAT algorithms fornk-size$$\mathcal { C}$$ C -circuits running in 2n/nktime (for allk) implyNEXPdoes not have$$(f \circ \mathcal { C})$$ ( f C ) -circuits of polynomial size.#SAT algorithms for$$2^{n^{{\varepsilon }}}$$ 2 n ε -size$$\mathcal { C}$$ C -circuits running in$$2^{n-n^{{\varepsilon }}}$$ 2 n n ε time (for someε> 0) implyQuasi-NPdoes not have$$(f \circ \mathcal { C})$$ ( f C ) -circuits of polynomial size. Applying#SAT algorithms from the literature, one immediate corollary of our results is thatQuasi-NPdoes not haveEMAJ∘ACC0∘THRcircuits of polynomial size, whereEMAJis the “exact majority” function, improving previous lower bounds againstACC0[Williams JACM’14] andACC0∘THR[Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class. 
    more » « less
  3. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less
  4. Abstract Let$$f$$ f be an analytic polynomial of degree at most$$K-1$$ K 1 . A classical inequality of Bernstein compares the supremum norm of$$f$$ f over the unit circle to its supremum norm over the sampling set of the$$K$$ K -th roots of unity. Many extensions of this inequality exist, often understood under the umbrella of Marcinkiewicz–Zygmund-type inequalities for$$L^{p},1\le p\leq \infty $$ L p , 1 p norms. We study dimension-free extensions of these discretization inequalities in the high-dimension regime, where existing results construct sampling sets with cardinality growing with the total degree of the polynomial. In this work we show that dimension-free discretizations are possible with sampling sets whose cardinality is independent of$$\deg (f)$$ deg ( f ) and is instead governed by the maximumindividualdegree of$$f$$ f ;i.e., the largest degree of$$f$$ f when viewed as a univariate polynomial in any coordinate. For example, we find that for$$n$$ n -variate analytic polynomials$$f$$ f of degree at most$$d$$ d and individual degree at most$$K-1$$ K 1 ,$$\|f\|_{L^{\infty }(\mathbf{D}^{n})}\leq C(X)^{d}\|f\|_{L^{\infty }(X^{n})}$$ f L ( D n ) C ( X ) d f L ( X n ) for any fixed$$X$$ X in the unit disc$$\mathbf{D}$$ D with$$|X|=K$$ | X | = K . The dependence on$$d$$ d in the constant is tight for such small sampling sets, which arise naturally for example when studying polynomials of bounded degree coming from functions on products of cyclic groups. As an application we obtain a proof of the cyclic group Bohnenblust–Hille inequality with an explicit constant$$\mathcal{O}(\log K)^{2d}$$ O ( log K ) 2 d
    more » « less
  5. Abstract Let$$(h_I)$$ ( h I ) denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ I D , the set of dyadic intervals and$$h_I\otimes h_J$$ h I h J denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ( s , t ) h I ( s ) h J ( t ) ,$$I,J\in \mathcal {D}$$ I , J D . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ V ( δ 2 ) of$$h_I\otimes h_J$$ h I h J ,$$I,J\in \mathcal {D}$$ I , J D . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ L p [ 0 , 1 ] or the Hardy spaces$$H^p[0,1]$$ H p [ 0 , 1 ] ,$$1\le p < \infty $$ 1 p < . We say that$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ D ( h I h J ) = d I , J h I h J , where$$d_{I,J}\in \mathbb {R}$$ d I , J R , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ C : V ( δ 2 ) V ( δ 2 ) given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ C h I h J = h I h J if$$|I|\le |J|$$ | I | | J | , and$$\mathcal {C} h_I\otimes h_J = 0$$ C h I h J = 0 if$$|I| > |J|$$ | I | > | J | , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) , there exist$$\lambda ,\mu \in \mathbb {R}$$ λ , μ R such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ λ C + μ ( Id - C ) approximately 1-projectionally factors through D , i.e., for all$$\eta > 0$$ η > 0 , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ Id ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ A · B = 1 and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ λ C + μ ( Id - C ) - A D B < η . Additionally, if$$\mathcal {C}$$ C is unbounded onX(Y), then$$\lambda = \mu $$ λ = μ and then$${{\,\textrm{Id}\,}}$$ Id either factors throughDor$${{\,\textrm{Id}\,}}-D$$ Id - D
    more » « less