skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Characterizing Schwarz maps by tracial inequalities
Abstract

Let$$\phi $$ϕbe a positive map from the$$n\times n$$n×nmatrices$$\mathcal {M}_n$$Mnto the$$m\times m$$m×mmatrices$$\mathcal {M}_m$$Mm. It is known that$$\phi $$ϕis 2-positive if and only if for all$$K\in \mathcal {M}_n$$KMnand all strictly positive$$X\in \mathcal {M}_n$$XMn,$$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$ϕ(KX-1K)ϕ(K)ϕ(X)-1ϕ(K). This inequality is not generally true if$$\phi $$ϕis merely a Schwarz map. We show that the corresponding tracial inequality$${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$Tr[ϕ(KX-1K)]Tr[ϕ(K)ϕ(X)-1ϕ(K)]holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results.

 
more » « less
Award ID(s):
2055282
NSF-PAR ID:
10395048
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Letters in Mathematical Physics
Volume:
113
Issue:
1
ISSN:
0377-9017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A search for exotic decays of the Higgs boson ($$\text {H}$$H) with a mass of 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeVto a pair of light pseudoscalars$$\text {a}_{1} $$a1is performed in final states where one pseudoscalar decays to two$${\textrm{b}}$$bquarks and the other to a pair of muons or$$\tau $$τleptons. A data sample of proton–proton collisions at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$s=13TeVcorresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level ($$\text {CL}$$CL) on the Higgs boson branching fraction to$$\upmu \upmu \text{ b } \text{ b } $$μμbband to$$\uptau \uptau \text{ b } \text{ b },$$ττbb,via a pair of$$\text {a}_{1} $$a1s. The limits depend on the pseudoscalar mass$$m_{\text {a}_{1}}$$ma1and are observed to be in the range (0.17–3.3) $$\times 10^{-4}$$×10-4and (1.7–7.7) $$\times 10^{-2}$$×10-2in the$$\upmu \upmu \text{ b } \text{ b } $$μμbband$$\uptau \uptau \text{ b } \text{ b } $$ττbbfinal states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine upper limits on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} \rightarrow \ell \ell \text{ b } \text{ b})$$B(Ha1a1bb)at 95%$$\text {CL}$$CL, with$$\ell $$being a muon or a$$\uptau $$τlepton. For different types of 2HDM+S, upper bounds on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$B(Ha1a1)are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space,$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$B(Ha1a1)values above 0.23 are excluded at 95%$$\text {CL}$$CLfor$$m_{\text {a}_{1}}$$ma1values between 15 and 60$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeV.

     
    more » « less
  2. Abstract

    Let$$(h_I)$$(hI)denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ID, the set of dyadic intervals and$$h_I\otimes h_J$$hIhJdenote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$(s,t)hI(s)hJ(t),$$I,J\in \mathcal {D}$$I,JD. We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$V(δ2)of$$h_I\otimes h_J$$hIhJ,$$I,J\in \mathcal {D}$$I,JD. This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$Lp[0,1]or the Hardy spaces$$H^p[0,1]$$Hp[0,1],$$1\le p < \infty $$1p<. We say that$$D:X(Y)\rightarrow X(Y)$$D:X(Y)X(Y)is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$D(hIhJ)=dI,JhIhJ, where$$d_{I,J}\in \mathbb {R}$$dI,JR, and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$C:V(δ2)V(δ2)given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ChIhJ=hIhJif$$|I|\le |J|$$|I||J|, and$$\mathcal {C} h_I\otimes h_J = 0$$ChIhJ=0if$$|I| > |J|$$|I|>|J|, as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$D:X(Y)X(Y), there exist$$\lambda ,\mu \in \mathbb {R}$$λ,μRsuch that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$λC+μ(Id-C)approximately 1-projectionally factors throughD,i.e., for all$$\eta > 0$$η>0, there exist bounded operatorsABso thatABis the identity operator$${{\,\textrm{Id}\,}}$$Id,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$A·B=1and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$λC+μ(Id-C)-ADB<η. Additionally, if$$\mathcal {C}$$Cis unbounded onX(Y), then$$\lambda = \mu $$λ=μand then$${{\,\textrm{Id}\,}}$$Ideither factors throughDor$${{\,\textrm{Id}\,}}-D$$Id-D.

     
    more » « less
  3. Abstract

    For every$$n\ge 2$$n2, thesurface Houghton group$${\mathcal {B}}_n$$Bnis defined as the asymptotically rigid mapping class group of a surface with exactlynends, all of them non-planar. The groups$${\mathcal {B}}_n$$Bnare analogous to, and in fact contain, the braided Houghton groups. These groups also arise naturally in topology: every monodromy homeomorphism of a fibered component of a depth-1 foliation of closed 3-manifold is conjugate into some$${\mathcal {B}}_n$$Bn. As countable mapping class groups of infinite type surfaces, the groups$$\mathcal {B}_n$$Bnlie somewhere between classical mapping class groups and big mapping class groups. We initiate the study of surface Houghton groups proving, among other things, that$$\mathcal {B}_n$$Bnis of type$$\text {F}_{n-1}$$Fn-1, but not of type$$\text {FP}_{n}$$FPn, analogous to the braided Houghton groups.

     
    more » « less
  4. Abstract

    The elliptic flow$$(v_2)$$(v2)of$${\textrm{D}}^{0}$$D0mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$D0)was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$sNN=5.02 TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$D0mesons were reconstructed at midrapidity$$(|y|<0.8)$$(|y|<0.8)from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$D0K-π+, in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$2<pT<12 GeV/c. The result indicates a positive$$v_2$$v2for non-prompt$${{\textrm{D}}^{0}}$$D0mesons with a significance of 2.7$$\sigma $$σ. The non-prompt$${{\textrm{D}}^{0}}$$D0-meson$$v_2$$v2is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$σsignificance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$2<pT<8GeV/c, and compatible with the$$v_2$$v2of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.

     
    more » « less
  5. Abstract

    Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$aj,1x1++aj,kxk=0for$$j=1,\dots ,m$$j=1,,mwith coefficients$$a_{j,i}\in \mathbb {F}_p$$aj,iFp. Suppose that$$k\ge 3m$$k3m, that$$a_{j,1}+\dots +a_{j,k}=0$$aj,1++aj,k=0for$$j=1,\dots ,m$$j=1,,mand that every$$m\times m$$m×mminor of the$$m\times k$$m×kmatrix$$(a_{j,i})_{j,i}$$(aj,i)j,iis non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$AFpnof size$$|A|> C\cdot \Gamma ^n$$|A|>C·Γncontains a solution$$(x_1,\dots ,x_k)\in A^k$$(x1,,xk)Akto the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$x1,,xkAare all distinct. Here,Cand$$\Gamma $$Γare constants only depending onp,mandksuch that$$\Gamma Γ<p. The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$x1,,xkin the solution$$(x_1,\dots ,x_k)\in A^k$$(x1,,xk)Akto be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$x1,,xkare not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.

     
    more » « less