skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Winning Without Observing Payoffs: Exploiting Behavioral Biases to Win Nearly Every Round
Gameplay under various forms of uncertainty has been widely studied. Feldman et al. [Michal Feldman et al., 2010] studied a particularly low-information setting in which one observes the opponent’s actions but no payoffs, not even one’s own, and introduced an algorithm which guarantees one’s payoff nonetheless approaches the minimax optimal value (i.e., zero) in a symmetric zero-sum game. Against an opponent playing a minimax-optimal strategy, approaching the value of the game is the best one can hope to guarantee. However, a wealth of research in behavioral economics shows that people often do not make perfectly rational, optimal decisions. Here we consider whether it is possible to actually win in this setting if the opponent is behaviorally biased. We model several deterministic, biased opponents and show that even without knowing the game matrix in advance or observing any payoffs, it is possible to take advantage of each bias in order to win nearly every round (so long as the game has the property that each action beats and is beaten by at least one other action). We also provide a partial characterization of the kinds of biased strategies that can be exploited to win nearly every round, and provide algorithms for beating some kinds of biased strategies even when we don't know which strategy the opponent uses.  more » « less
Award ID(s):
2216899 2212968 2240236
PAR ID:
10511400
Author(s) / Creator(s):
;
Editor(s):
Guruswami, Venkatesan
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
15th Innovations in Theoretical Computer Science Conference (ITCS 2024)
Subject(s) / Keyword(s):
Game theory Behavioral bias Theory of computation → Algorithmic game theory
Format(s):
Medium: X
Location:
Berkeley, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We investigate the increasingly important and common game-solving setting where we do not have an explicit description of the game but only oracle access to it through gameplay, such as in financial or military simulations and computer games. During a limited-duration learning phase, the algorithm can control the actions of both players in order to try to learn the game and how to play it well. After that, the algorithm has to produce a strategy that has low exploitability. Our motivation is to quickly learn strategies that have low exploitability in situations where evaluating the payoffs of a queried strategy profile is costly. For the stochastic game setting, we propose using the distribution of state-action value functions induced by a belief distribution over possible environments. We compare the performance of various exploration strategies for this task, including generalizations of Thompson sampling and Bayes-UCB to this new setting. These two consistently outperform other strategies. 
    more » « less
  2. The success of AlphaGo Zero shows that a computer can learn to play a complicated board game without relying on the knowledge from human players. We observe that designing a distributed protocol is similar to playing board games to some extent: when determining the next action to take, they both want to ensure they can win even when a smart opponent tries to drive the game/protocol to the worst case. In this work, we explore whether we can apply similar techniques to learn a distributed protocol with zero knowledge. Towards this goal, we model the process in a distributed protocol as a state machine, and further rely on model checking to validate the correctness of the learned state machine. With this approach, we successfully learned a correct atomic commit protocol with three processes, and upon that, we further discuss future work. 
    more » « less
  3. We introduce a simple but general online learning framework in which a learner plays against an adversary in a vector-valued game that changes every round. Even though the learner's objective is not convex-concave (and so the minimax theorem does not apply), we give a simple algorithm that can compete with the setting in which the adversary must announce their action first, with optimally diminishing regret. We demonstrate the power of our framework by using it to (re)derive optimal bounds and efficient algorithms across a variety of domains, ranging from multicalibration to a large set of no-regret algorithms, to a variant of Blackwell's approachability theorem for polytopes with fast convergence rates. As a new application, we show how to (multi)calibeat'' an arbitrary collection of forecasters --- achieving an exponentially improved dependence on the number of models we are competing against, compared to prior work. 
    more » « less
  4. S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh (Ed.)
    We introduce a simple but general online learning framework in which a learner plays against an adversary in a vector-valued game that changes every round. Even though the learner's objective is not convex-concave (and so the minimax theorem does not apply), we give a simple algorithm that can compete with the setting in which the adversary must announce their action first, with optimally diminishing regret. We demonstrate the power of our framework by using it to (re)derive optimal bounds and efficient algorithms across a variety of domains, ranging from multicalibration to a large set of no-regret algorithms, to a variant of Blackwell's approachability theorem for polytopes with fast convergence rates. As a new application, we show how to (multi)calibeat'' an arbitrary collection of forecasters --- achieving an exponentially improved dependence on the number of models we are competing against, compared to prior work. 
    more » « less
  5. null (Ed.)
    We focus on the problem of finding an optimal strategy for a team of players that faces an opponent in an imperfect-information zero-sum extensive-form game. Team members are not allowed to communicate during play but can coordinate before the game. In this setting, it is known that the best the team can do is sample a profile of potentially randomized strategies (one per player) from a joint (a.k.a. correlated) probability distribution at the beginning of the game. In this paper, we first provide new modeling results about computing such an optimal distribution by drawing a connection to a different literature on extensive-form correlation. Second, we provide an algorithm that allows one for capping the number of profiles employed in the solution. This begets an anytime algorithm by increasing the cap. We find that often a handful of well-chosen such profiles suffices to reach optimal utility for the team. This enables team members to reach coordination through a simple and understandable plan. Finally, inspired by this observation and leveraging theoretical concepts that we introduce, we develop an efficient column-generation algorithm for finding an optimal distribution for the team. We evaluate it on a suite of common benchmark games. It is three orders of magnitude faster than the prior state of the art on games that the latter can solve and it can also solve several games that were previously unsolvable. 
    more » « less