This experience report describes an approach for helping elementary schools integrate computational thinking and coding by leveraging existing resources and infrastructure that do not rely on 1-1 computing. A particular focus is using the school library and media center as a site to complement and enhance classroom instruction on coding. Further, our approach builds upon "unplugged" knowledge and practices that are already familiar to and motivating for students, in this case tabletop board games. Through these games, students can use their prior knowledge and ease with tabletop gaming mechanics to cue relevant ideas for core computational concepts. We describe a model and an instructional unit spanning across classroom and school library settings that builds upon board game play as a source domain for computing knowledge. Building on expansive framing, the model emphasizes instructional linkages being made between one domain (the tabletop board game) and another (specially designed Scratch project shells with partially complete code blocks) such that the reasoning activities and different contexts are seen as instantiations of the same encompassing context. We present the experiences of three elementary school teachers as they implemented the unit in their classrooms and with their school librarian. We also show initial findings on the impact of the unit on student interest (N=87), as measured by pre- and post- surveys. We conclude with lessons learned about ways to improve the unit and future classroom implementations.
more »
« less
Learning Distributed Protocols with Zero Knowledge
The success of AlphaGo Zero shows that a computer can learn to play a complicated board game without relying on the knowledge from human players. We observe that designing a distributed protocol is similar to playing board games to some extent: when determining the next action to take, they both want to ensure they can win even when a smart opponent tries to drive the game/protocol to the worst case. In this work, we explore whether we can apply similar techniques to learn a distributed protocol with zero knowledge. Towards this goal, we model the process in a distributed protocol as a state machine, and further rely on model checking to validate the correctness of the learned state machine. With this approach, we successfully learned a correct atomic commit protocol with three processes, and upon that, we further discuss future work.
more »
« less
- Award ID(s):
- 2118745
- PAR ID:
- 10521025
- Publisher / Repository:
- NeurIPS
- Date Published:
- Format(s):
- Medium: X
- Location:
- The 8th ACM/IEEE Symposium on Edge Computing (SEC 2023)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Automatic speech recognition and voice identification systems are being deployed in a wide array of applications, from providing control mechanisms to devices lacking traditional interfaces, to the automatic transcription of conversations and authentication of users. Many of these applications have significant security and privacy considerations. We develop attacks that force mistranscription and misidentification in state of the art systems, with minimal impact on human comprehension. Processing pipelines for modern systems are comprised of signal preprocessing and feature extraction steps, whose output is fed to a machine-learned model. Prior work has focused on the models, using white-box knowledge to tailor model-specific attacks. We focus on the pipeline stages before the models, which (unlike the models) are quite similar across systems. As such, our attacks are black-box, transferable, can be tuned to require zero queries to the target, and demonstrably achieve mistranscription and misidentification rates as high as 100% by modifying only a few frames of audio. We perform a study via Amazon Mechanical Turk demonstrating that there is no statistically significant difference between human perception of regular and perturbed audio. Our findings suggest that models may learn aspects of speech that are generally not perceived by human subjects, but that are crucial for model accuracy.more » « less
-
Public random beacons publish random numbers at regular intervals, which anyone can obtain and verify. The design of public distributed random beacons has been an exciting research direction with significant implications for blockchains, voting, and beyond. Distributed random beacons, in addition to being bias-resistant and unpredictable, also need to have low communication overhead and latency, high resilience to faults, and ease of reconfigurability. Existing synchronous random beacon protocols sacrifice one or more of these properties. In this work, we design an efficient unpredictable synchronous random beacon protocol, OptRand, with quadratic (in the number $$n$$ of system nodes) communication complexity per beacon output. First, we innovate by employing a novel combination of bilinear pairing based publicly verifiable secret-sharing and non-interactive zero-knowledge proofs to build a linear (in $$n$$) sized publicly verifiable random sharing. Second, we develop a state machine replication protocol with linear-sized inputs that is also optimistically responsive, i.e., it can progress responsively at actual network speed during optimistic conditions, despite the synchrony assumption, and thus incur low latency. In addition, we present an efficient reconfiguration mechanism for OptRand that allows nodes to leave and join the system. Our experiments show our protocols perform significantly better compared to state-of-the-art protocols under optimistic conditions and on par with state-of-the-art protocols in the normal case. We are also the first to implement a reconfiguration mechanism for distributed beacons and demonstrate that our protocol continues to be live during reconfigurations.more » « less
-
Reinforcement learning in problems with symbolic state spaces is challenging due to the need for reasoning over long horizons. This paper presents a new approach that utilizes relational abstractions in conjunction with deep learning to learn a generalizable Q-function for such problems. The learned Q-function can be efficiently transferred to related problems that have different object names and object quantities, and thus, entirely different state spaces. We show that the learned, generalized Q-function can be utilized for zero-shot transfer to related problems without an explicit, hand-coded curriculum. Empirical evaluations on a range of problems show that our method facilitates efficient zero-shot transfer of learned knowledge to much larger problem instances containing many objects.more » « less
-
Transformer language models have made tremendous strides in natural language understanding tasks. However, the complexity of natural language makes it challenging to ascertain how accurately these models are tracking the world state underlying the text. Motivated by this issue, we consider the task of language modeling for the game of chess. Unlike natural language, chess notations describe a simple, constrained, and deterministic domain. Moreover, we observe that the appropriate choice of chess notation allows for directly probing the world state, without requiring any additional probing-related machinery. We find that: (a) With enough training data, transformer language models can learn to track pieces and predict legal moves with high accuracy when trained solely on move sequences. (b) For small training sets providing access to board state information during training can yield significant improvements. (c) The success of transformer language models is dependent on access to the entire game history i.e. “full attention”. Approximating this full attention results in a significant performance drop. We propose this testbed as a benchmark for future work on the development and analysis of transformer language models.more » « less
An official website of the United States government

