skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teaching Acid–Base Fundamentals and Introducing pH Using Butterfly Pea Flower Tea
Stimulating interest in science at an early age is important for STEM education. This work details an educational activity utilizing the anthocyanins found in the butterfly pea flower (Clitoria ternatea). This activity was developed for use in official classroom settings, online, and/or at-home with parental or educator guidance. Primary and high school students aged 7 to 14 performed a straightforward extraction of anthocyanin pH indicators from Clitoria ternatea with hot water. Students were able to use this indicator and its vast range of colors to compare the acidity and basicity of different household solutions. Most responses recorded show that students used reasoning from the indicator and a subsequent chemical reaction to correctly differentiate acids from bases and compare their strengths. Overall, this activity's application of non-toxic and easily accessible indicators from the butterfly pea flower assisted in introducing young students to various concepts in acid-base chemistry, including acid/base strength and pH, solute dissolution, neutralization reactions, and qualitative analysis.  more » « less
Award ID(s):
2304955
PAR ID:
10511406
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Chemical Society and PubMed Central
Date Published:
Journal Name:
Journal of Chemical Education
Volume:
101
Issue:
3
ISSN:
0021-9584
Page Range / eLocation ID:
1373 to 1378
Subject(s) / Keyword(s):
Acids Bases Elementary Hands-On Learning High School Informal Learning Introductory Chemistry Manipulatives Middle School Science Outreach Public Understanding pH.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The dogma that the synaptic cleft acidifies during neurotransmission is based on the corelease of neurotransmitters and protons from synaptic vesicles, and is supported by direct data from sensory ribbon-type synapses. However, it is unclear whether acidification occurs at non–ribbon-type synapses. Here we used genetically encoded fluorescent pH indicators to examine cleft pH at conventional neuronal synapses. At the neuromuscular junction of femaleDrosophilalarvae, we observed alkaline spikes of over 1 log unit during fictive locomotionin vivo. Ex vivo, single action potentials evoked alkalinizing pH transients of only ∼0.01 log unit, but these transients summated rapidly during burst firing. A chemical pH indicator targeted to the cleft corroborated these findings. Cleft pH transients were dependent on Ca2+movement across the postsynaptic membrane, rather than neurotransmitter release per se, a result consistent with cleft alkalinization being driven by the Ca2+/H+antiporting activity of the plasma membrane Ca2+-ATPase at the postsynaptic membrane. Targeting the pH indicators to the microenvironment of the presynaptic voltage gated Ca2+channels revealed that alkalinization also occurred within the cleft proper at the active zone and not just within extrasynaptic regions. Application of the pH indicators at the mouse calyx of Held, a mammalian central synapse, similarly revealed cleft alkalinization during burst firing in both males and females. These findings, made at two quite different non–ribbon type synapses, suggest that cleft alkalinization during neurotransmission, rather than acidification, is a generalizable phenomenon across conventional neuronal synapses. SIGNIFICANCE STATEMENTNeurotransmission is highly sensitive to the pH of the extracellular milieu. This is readily evident in the neurological symptoms that accompany systemic acid/base imbalances. Imaging data from sensory ribbon-type synapses show that neurotransmission itself can acidify the synaptic cleft, likely due to the corelease of protons and glutamate. It is not clear whether the same phenomenon occurs at conventional neuronal synapses due to the difficulties in collecting such data. If it does occur, it would provide for an additional layer of activity-dependent modulation of neurotransmission. Our findings of alkalinization, rather than acidification, within the cleft of two different neuronal synapses encourages a reassessment of the scope of activity-dependent pH influences on neurotransmission and short-term synaptic plasticity. 
    more » « less
  2. Abstract Community science, which engages students and the public in data collection and scientific inquiry, is often integrated into conservation and long-term monitoring efforts. However, it has the potential to also introduce the public to, and be useful for, sensory ecology and other fields of study. Here we describe a community science project that exposes participants to animal behavior and sensory ecology using the rich butterfly community of Northwest Arkansas, United States. Butterflies use visual signals to communicate and to attract mates. Brighter colors can produce stronger signals for mate attraction but can also unintentionally attract negative attention from predators. Environmental conditions such as weather can affect visual signaling as well, by influencing the wavelengths of light available and subsequent signal detection. However, we do not know whether the signals butterflies present correlate broadly with how they behave. In this study, we collaborated with hundreds of students and community members at the University of Arkansas (UARK) and the Botanical Gardens of the Ozarks (BGO) for over 3.5 years to examine relationships among wing pattern, weather, time of day, behavior, and flower choice. We found that both weather and wing color influenced general butterfly behavior. Butterflies were seen feeding more on cloudy days than on sunny or partly cloudy days. Brown butterflies fed or sat more often, while white butterflies flew more often relative to other butterfly colors. We also found that there was an interaction between the effects of weather and wing color on butterfly behavior. Furthermore, butterfly color predicted the choice of flower colors that butterflies visited, though this effect was influenced by the observer group (UARK student or BGO participant). These results suggest that flower choice may be associated with butterfly wing pattern, and that different environmental conditions may influence butterfly behavior in wing-pattern–specific ways. They also illustrate one way that public involvement in behavioral studies can facilitate the identification of coarse-scale, community-wide behavioral patterns, and lay the groundwork for future studies of sensory niches. 
    more » « less
  3. Abstract Teaching experiments involving edible, biodegradable calcium alginate beads serve as an attractive model system to introduce upper secondary age students to core chemistry topics through innovations in sustainable consumer products. A teaching experiment is described that engages students with the synthesis of calcium alginate hydrogel beads from sodium alginate and calcium lactate, two food-safe and renewable materials. The beads’ outer membranes are a result of ionic interactions between carboxylate groups from alginate strands and the divalent calcium cations between them, thus forming cross-linked polymers. Protonation of the carboxylate groups on the alginate strands decreases crosslinking density affecting bead formation. First, various concentrations of citric acid are used to lower the pH of the sodium alginate solution and the effect on the calcium alginate bead formation is observed. A correlation between pH and bead shape and firmness is derived. This information is then used to explore juices with varying natural acidities. The experiment is amenable to implementation in the classroom or as an at-home activity. Learning outcomes include acid-base reactions, chemical bonding, polymer structures, and green chemistry concepts. Students consider the environmental challenges of traditional plastics used in packaging and how innovative new commercial products are attempting to provide solutions. 
    more » « less
  4. Microplastics (MP) have been proposed as a vector for pathogenic microorganisms in the freshwater environment. The objectives of this study were (1) to compare the fecal indicator growth in biofilms on MP and material control microparticles incubated in different wastewater fractions and (2) to compare MP biofilm, natural microparticle biofilm, and planktonic cell susceptibility to disinfection by peracetic acid (PAA). Biofilms were grown on high‐density polyethylene, low‐density polyethylene, polypropylene MP or wood chips (as a material control) and incubated in either wastewater influent or pre‐disinfection secondary effluent. Reactors were disinfected with PAA, biofilms were dislodged, and fecal coliform and E. coli were cultivated. Fecal indicators were quantifiable in both MP and wood biofilms incubated in the wastewater influent but only on the wood biofilms incubated in secondary wastewater effluent. More fecal coliform grew in the wood biofilms than MP biofilms, and the biofilms grown on MP and woodchips were more resistant to disinfection than planktonic bacteria. Thus, it may be possible to refer to the disinfection literature for fecal indicators in biofilm on other particles to predict behavior on MP. Treatments that remove particles in general would help reduce the potential for fecal indicator bypass of disinfection. 
    more » « less
  5. Biomineralizing cells concentrate dissolved inorganic carbon (DIC) and remove protons from the site of mineral precipitation. However, the molecular regulatory mechanisms that orchestrate pH homeostasis and biomineralization of calcifying cells are poorly understood. Here, we report that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) coordinates intracellular pH (pH i ) regulation in the calcifying primary mesenchyme cells (PMCs) of sea urchin larvae. Single-cell transcriptomics, in situ hybridization, and immunocytochemistry elucidated the spatiotemporal expression of sAC during skeletogenesis. Live pH i imaging of PMCs revealed that the downregulation of sAC activity with two structurally unrelated small molecules inhibited pH i regulation of PMCs, an effect that was rescued by the addition of cell-permeable cAMP. Pharmacological sAC inhibition also significantly reduced normal spicule growth and spicule regeneration, establishing a link between PMC pH i regulation and biomineralization. Finally, increased expression of sAC mRNA was detected during skeleton remineralization and exposure to CO 2 -induced acidification. These findings suggest that transcriptional regulation of sAC is required to promote remineralization and to compensate for acidic stress. This work highlights the central role of sAC in coordinating acid-base regulation and biomineralization in calcifying cells of a marine animal. 
    more » « less