skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Volume growth of 3-manifolds with scalar curvature lower bounds
We give a new proof of a recent result of Munteanu–Wang relating scalar curvature to volume growth on a 3 3 -manifold with non-negative Ricci curvature. Our proof relies on the theory of μ<#comment/> \mu -bubbles introduced by Gromov [Geom. Funct. Anal. 28 (2018), pp. 645–726] as well as the almost splitting theorem due to Cheeger–Colding [Ann. of Math. (2) 144 (1996), pp. 189–237].  more » « less
Award ID(s):
2016403
PAR ID:
10511438
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Math Society
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
151
Issue:
772
ISSN:
0002-9939
Page Range / eLocation ID:
4501 to 4511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that a compact Riemannian 3 3 -manifold M M with strictly convex simply connected boundary and sectional curvature K ≤<#comment/> a ≤<#comment/> 0 K\leq a\leq 0 is isometric to a convex domain in a complete simply connected space of constant curvature a a , provided that K ≡<#comment/> a K\equiv a on planes tangent to the boundary of M M . This yields a characterization of strictly convex surfaces with minimal total curvature in Cartan-Hadamard 3 3 -manifolds, and extends some rigidity results of Greene-Wu, Gromov, and Schroeder-Strake. Our proof is based on a recent comparison formula for total curvature of Riemannian hypersurfaces, which also yields some dual results for K ≥<#comment/> a ≥<#comment/> 0 K\geq a\geq 0
    more » « less
  2. We say a null-homologous knot K K in a 3 3 -manifold Y Y has Property G, if the Thurston norm and fiberedness of the complement of K K is preserved under the zero surgery on K K . In this paper, we will show that, if the smooth 4 4 -genus of K ×<#comment/> { 0 } K\times \{0\} (in a certain homology class) in ( Y ×<#comment/> [ 0 , 1 ] ) #<#comment/> N C P 2 ¯<#comment/> (Y\times [0,1])\#N\overline {\mathbb CP^2} , where Y Y is a rational homology sphere, is smaller than the Seifert genus of K K , then K K has Property G. When the smooth 4 4 -genus is 0 0 , Y Y can be taken to be any closed, oriented 3 3 -manifold. 
    more » « less
  3. In this paper, we consider higher regularity of a weak solution ( u , p ) (\mathbf {u},p) to stationary Stokes systems with variable coefficients. Under the assumptions that coefficients and data are piecewise C s , δ<#comment/> C^{s,\delta } in a bounded domain consisting of a finite number of subdomains with interfacial boundaries in C s + 1 , μ<#comment/> C^{s+1,\mu } , where s s is a positive integer, δ<#comment/> ∈<#comment/> ( 0 , 1 ) \delta \in (0,1) , and μ<#comment/> ∈<#comment/> ( 0 , 1 ] \mu \in (0,1] , we show that D u D\mathbf {u} and p p are piecewise C s , δ<#comment/> μ<#comment/> C^{s,\delta _{\mu }} , where δ<#comment/> μ<#comment/> = min { 1 2 , μ<#comment/> , δ<#comment/> } \delta _{\mu }=\min \big \{\frac {1}{2},\mu ,\delta \big \} . Our result is new even in the 2D case with piecewise constant coefficients. 
    more » « less
  4. Let f f be analytic on [ 0 , 1 ] [0,1] with | f ( k ) ( 1 / 2 ) | ⩽<#comment/> A α<#comment/> k k ! |f^{(k)}(1/2)|\leqslant A\alpha ^kk! for some constants A A and α<#comment/> > 2 \alpha >2 and all k ⩾<#comment/> 1 k\geqslant 1 . We show that the median estimate of μ<#comment/> = ∫<#comment/> 0 1 f ( x ) d x \mu =\int _0^1f(x)\,\mathrm {d} x under random linear scrambling with n = 2 m n=2^m points converges at the rate O ( n −<#comment/> c log ⁡<#comment/> ( n ) ) O(n^{-c\log (n)}) for any c > 3 log ⁡<#comment/> ( 2 ) / π<#comment/> 2 ≈<#comment/> 0.21 c> 3\log (2)/\pi ^2\approx 0.21 . We also get a super-polynomial convergence rate for the sample median of 2 k −<#comment/> 1 2k-1 random linearly scrambled estimates, when k / m k/m is bounded away from zero. When f f has a p p ’th derivative that satisfies a λ<#comment/> \lambda -Hölder condition then the median of means has error O ( n −<#comment/> ( p + λ<#comment/> ) + ϵ<#comment/> ) O( n^{-(p+\lambda )+\epsilon }) for any ϵ<#comment/> > 0 \epsilon >0 , if k →<#comment/> ∞<#comment/> k\to \infty as m →<#comment/> ∞<#comment/> m\to \infty . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number. 
    more » « less
  5. Motivated by recent work on optimal approximation by polynomials in the unit disk, we consider the following noncommutative approximation problem: for a polynomial f f in d d freely noncommuting arguments, find a free polynomial p n p_n , of degree at most n n , to minimize c n ‖<#comment/> p n f −<#comment/> 1 ‖<#comment/> 2 c_n ≔\|p_nf-1\|^2 . (Here the norm is the ℓ<#comment/> 2 \ell ^2 norm on coefficients.) We show that c n →<#comment/> 0 c_n\to 0 if and only if f f is nonsingular in a certain nc domain (the row ball), and prove quantitative bounds. As an application, we obtain a new proof of the characterization of polynomials cyclic for the d d -shift. 
    more » « less