skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Super-Exponential Convergence Rate of a Nonlinear Continuous Data Assimilation Algorithm: The 2D Navier–Stokes Equation Paradigm
We study a nonlinear-nudging modification of the Azouani–Olson–Titi continuous data assimilation (downscaling) algorithm for the 2D incompressible Navier–Stokes equations. We give a rigorous proof that the nonlinear-nudging system is globally well posed and, moreover, that its solutions converge to the true solution exponentially fast in time. Furthermore, we also prove that once the error has decreased below a certain order one threshold, the convergence becomes double exponentially fast in time, up until a precision determined by the sparsity of the observed data. In addition, we demonstrate the applicability of the analytical and sharpness of the results computationally.  more » « less
Award ID(s):
2206741
PAR ID:
10511553
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Nonlinear Science
Date Published:
Journal Name:
Journal of Nonlinear Science
Volume:
34
Issue:
2
ISSN:
0938-8974
Subject(s) / Keyword(s):
Data assimilation Feedback control Navier–Stokes equations Nudging
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the computational efficiency of several nudging data assimilation algorithms for the 2D magnetohydrodynamic equations, using varying amounts and types of data. We find that the algorithms work with much less resolution in the data than required by the rigorous estimates in [7]. We also test other abridged nudging algorithms to which the analytic techniques in [7] do not seem to apply. These latter tests indicate, in particular, that velocity data alone is sufficient for synchronization with a chaotic reference solution, while magnetic data alone is not. We demonstrate that a new nonlinear nudging algorithm, which is adaptive in both time and space, synchronizes at a super exponential rate. [7] A. Biswas, J. Hudson, A. Larios and Y. Pei, Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields, Asymptot. Anal., 108 (2018), 1-43. 
    more » « less
  2. Nudging is a behavioral strategy aimed at influencing people’s thoughts and actions. Nudging techniques can be found in many situations in our daily lives, and these nudging techniques can targeted at human fast and unconscious thinking, e.g., by using images to generate fear or the more careful and effortful slow thinking, e.g., by releasing information that makes us reflect on our choices. In this paper, we propose and discuss a value-based AI-human collaborative framework where AI systems nudge humans by proposing decision recommendations. Three different nudging modalities, based on when recommendations are presented to the human, are intended to stimulate human fast thinking, slow thinking, or meta-cognition. Values that are relevant to a specific decision scenario are used to decide when and how to use each of these nudging modalities. Examples of values are decision quality, speed, human upskilling and learning, human agency, and privacy. Several values can be present at the same time, and their priorities can vary over time. The framework treats values as parameters to be instantiated in a specific decision environment. 
    more » « less
  3. Abstract A two‐time‐scale system involves both fast and slow dynamics. This article studies observer design for general nonlinear two‐time‐scale systems and presents two alternative nonlinear observer design approaches, one full‐order and one reduced‐order. The full‐order observer is designed by following a scheme to systematically select design parameters, so that the fast and slow observer dynamics are assigned to estimate the corresponding system modes. The reduced‐order observer is derived based on a lower dimensional model to reconstruct the slow states, along with the algebraic slow‐motion invariant manifold function to reconstruct the fast states. Through an error analysis, it is shown that the reduced‐order observer is capable of providing accurate estimation of the states for the detailed system with an exponentially decaying estimation error. In the last part of the article, the two proposed observers are designed for an anaerobic digestion process, as an illustrative example to evaluate their performance and convergence properties. 
    more » « less
  4. Abstract Nudging is a ubiquitous capability of numerical weather and climate models that is widely used in a variety of applications (e.g., crude data assimilation, “intelligent” interpolation between analysis times, constraining flow in tracer advection/diffusion simulations). Here, the focus is on the momentum nudging tendencies themselves, rather than the atmospheric state that results from application of the method. The initial intent was to interpret these tendencies as a quantitative estimate of model error (net parameterization error in particular). However, it was found that nudging tendencies depend strongly on the nudging time scale chosen, which is the primary result presented here. Reducing the nudging time scale reduces the difference between the model state and the target state, but much less so than the reduction in the nudging time scale, resulting in increased nudging tendencies. The dynamical core, in particular, appears to increasingly oppose nudging tendencies as the nudging time scale is reduced. A heuristic analysis suggests such a result should be expected as long as the state the model is trying to achieve differs from the target state, regardless of the type of target state (e.g., a reanalysis, another model). These results suggest nudging tendencies cannot bequantitativelyinterpreted as model error. Still, two experiments aimed at seeing how nudging can identify a withheld parameterization suggest nudging tendencies do contain some information on model errors and/or missing physical processes and still might be useful in model development and tuning, even if only qualitatively. 
    more » « less
  5. WeproposetousetheL􏰀ojasiewiczinequalityasageneraltoolforanalyzingthecon- vergence rate of gradient descent on a Hilbert manifold, without resorting to the continuous gradient flow. Using this tool, we show that a Sobolev gradient descent method with adaptive inner product converges exponentially fast to the ground state for the Gross-Pitaevskii eigenproblem. This method can be extended to a class of general high-degree optimizations or nonlinear eigenproblems under cer- tain conditions. We demonstrate this generalization using several examples, in particular a nonlinear Schr ̈odinger eigenproblem with an extra high-order interaction term. Numerical experiments are pre- sented for these problems. 
    more » « less