skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deficiencies in cluster‐2 ALA lipid flippases result in salicylic acid‐dependent growth reductions
Abstract P4 ATPases (i.e., lipid flippases) are eukaryotic enzymes that transport lipids across membrane bilayers. In plants, P4 ATPases are named Aminophospholipid ATPases (ALAs) and are organized into five phylogenetic clusters. Here we generated an Arabidopsis mutant lacking all five cluster‐2 ALAs (ala8/9/10/11/12), which is the most highly expressedALAsubgroup in vegetative tissues. Plants harboring the quintuple knockout (KO) show rosettes that are 2.2‐fold smaller and display chlorotic lesions. A similar but less severe phenotype was observed in anala10/11double KO. The growth and lesion phenotypes ofala8/9/10/11/12mutants were reversed by expressing aNahGtransgene, which encodes an enzyme that degrades salicylic acid (SA). A role for SA in promoting the lesion phenotype was further supported by quantitative PCR assays showing increased mRNA abundance for an SA‐biosynthesis geneISOCHORISMATE SYNTHASE 1(ICS1) and two SA‐responsive genesPATHOGENESIS‐RELATED GENE 1(PR1) andPR2.Lesion phenotypes were also reversed by growing plants in liquid media containing either low calcium (~0.1 mM) or high nitrogen concentrations (~24 mM), which are conditions known to suppress SA‐dependent autoimmunity. Yeast‐based fluorescent lipid uptake assays revealed that ALA10 and ALA11 display overlapping substrate specificities, including the transport of LysoPC signaling lipids. Together, these results establish that the biochemical functions of ALA8–12 are at least partially overlapping, and that deficiencies in cluster‐2 ALAs result in an SA‐dependent autoimmunity phenotype that has not been observed for flippase mutants with deficiencies in otherALAclusters.  more » « less
Award ID(s):
2129234
PAR ID:
10511679
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Physiologia Plantarum
Date Published:
Journal Name:
Physiologia Plantarum
Volume:
176
Issue:
2
ISSN:
0031-9317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The lipid bilayer of biological membranes has a complex composition, including high chemical heterogeneity, the presence of nanodomains of specific lipids, and asymmetry with respect to lipid composition between the two membrane leaflets. In membrane trafficking, membrane vesicles constantly bud off from one membrane compartment and fuse with another, and both budding and fusion events have been proposed to require membrane lipid asymmetry. One mechanism for generating asymmetry in lipid bilayers involves the action of the P4 ATPase family of lipid flippases; these are biological pumps that use ATP as an energy source to flip lipids from one leaflet to the other. The model plant Arabidopsis (Arabidopsis thaliana) contains 12 P4 ATPases (AMINOPHOSPHOLIPID ATPASE1–12; ALA1–12), many of which are functionally redundant. Studies of P4 ATPase mutants have confirmed the essential physiological functions of these pumps and pleiotropic mutant phenotypes have been observed, as expected when genes required for basal cellular functions are disrupted. For instance, phenotypes associated with ala3 (dwarfism, pollen defects, sensitivity to pathogens and cold, and reduced polar cell growth) can be related to membrane trafficking problems. P5 ATPases are evolutionarily related to P4 ATPases, and may be the counterpart of P4 ATPases in the endoplasmic reticulum. The absence of P4 and P5 ATPases from prokaryotes and their ubiquitous presence in eukaryotes make these biological pumps a defining feature of eukaryotic cells. Here, we review recent advances in the field of plant P4 and P5 ATPases. 
    more » « less
  2. null (Ed.)
    Abstract Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies. 
    more » « less
  3. ABSTRACT Plant immunity activation often results in suppression of plant growth, particularly in the case of constitutive immune activation. We discovered that signaling of the phytohormone cytokinin (CK), known to regulate plant growth through the control of cell division and shoot apical meristem (SAM) activity, can be suppressed by negative crosstalk with the defense phytohormones jasmonic acid (JA), and most evidently, salicylic acid (SA). We show that changing the negative crosstalk of SA on CK signaling in autoimmunity mutants by targeted increase of endogenous CK levels results in plants resistant to pathogens from diverse lifestyles, and relieves suppression of reproductive growth. Moreover, such changes in crosstalk result in a novel reproductive growth phenotype, suggesting a role for defense phytohormones in the SAM, likely through regulation of nitrogen response and cellular redox status. Our data suggest that targeted phytohormone crosstalk engineering can be used to achieve increased reproductive growth and pathogen resistance. SIGNIFICANCE STATEMENTPlants constantly integrate environmental stimuli with developmental programs to optimize their growth and fitness. Excessive activation of the plant immune system often leads to decreased plant growth, a process known as the growth-defense tradeoff. Here, we adapted phytohormone levels in Arabidopsis reproductive tissues of autoimmunity mutants to change phytohormonal crosstalk and diminish the growth tradeoff, resulting in increased broad resistance to pathogens and decreased growth suppression. Similar approaches to phytohormone crosstalk engineering could be used in different contexts to achieve outcomes of higher plant stress resilience and yield. 
    more » « less
  4. In this study, we used optical spectroscopy to characterize the physical properties of microvesicles released from the thermoacidophilic archaeon Sulfolobus acidocaldarius (Sa-MVs). The most abundant proteins in Sa-MVs are the S-layer proteins, which self-assemble on the vesicle surface forming an array of crystalline structures. Lipids in Sa-MVs are exclusively bipolar tetraethers. We found that when excited at 275 nm, intrinsic protein fluorescence of Sa-MVs at 23 °C has an emission maximum at 303 nm (or 296 nm measured at 75 °C), which is unusually low for protein samples containing multiple tryptophans and tyrosines. In the presence of 10–11 mM of the surfactant n-tetradecyl-β-d-maltoside (TDM), Sa-MVs were disintegrated, the emission maximum of intrinsic protein fluorescence was shifted to 312 nm, and the excitation maximum was changed from 288 nm to 280.5 nm, in conjunction with a significant decrease (>2 times) in excitation band sharpness. These data suggest that most of the fluorescent amino acid residues in native Sa-MVs are in a tightly packed protein matrix and that the S-layer proteins may form J-aggregates. The membranes in Sa-MVs, as well as those of unilamellar vesicles (LUVs) made of the polar lipid fraction E (PLFE) tetraether lipids isolated from S. acidocaldarius (LUVPLFE), LUVs reconstituted from the tetraether lipids extracted from Sa-MVs (LUVMV) and LUVs made of the diester lipids, were investigated using the probe 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan). The generalized polarization (GP) values of Laurdan in tightly packed Sa-MVs, LUVMV, and LUVPLFE were found to be much lower than those obtained from less tightly packed DPPC gel state, which echoes the previous finding that the GP values from tetraether lipid membranes cannot be directly compared with the GP values from diester lipid membranes, due to differences in probe disposition. Laurdan’s GP and red-edge excitation shift (REES) values in Sa-MVs and LUVMV decrease with increasing temperature monotonically with no sign for lipid phase transition. Laurdan’s REES values are high (9.3–18.9 nm) in the tetraether lipid membrane systems (i.e., Sa-MVs, LUVMV and LUVPLFE) and low (0.4–5.0 nm) in diester liposomes. The high REES and low GP values suggest that Laurdan in tetraether lipid membranes, especially in the membrane of Sa-MVs, is in a very motionally restricted environment, bound water molecules and the polar moieties in the tetraether lipid headgroups strongly interact with Laurdan’s excited state dipole moment, and “solvent” reorientation around Laurdan’s chromophore in tetraether lipid membranes occurs very slowly compared to Laurdan’s lifetime. 
    more » « less
  5. Calcium ion transporting systems control cytosol Ca2+ levels ([Ca2+]cyt) and generate transient calcium (Ca2+) signatures which are considered to be key to environmental responses. Here, we report an impact of resting [Ca2+]cyt on plants from the functional study of calmodulin regulated Ca2+ pumps or Ca2+-ATPases in Arabidopsis thaliana. The plasma membrane localized pumps ACA8 and ACA10 as well as the vacuole localized pumps ACA4 and ACA11 are found to be critical in maintaining low resting [Ca2+]cyt and be essential for plant survival under chilling and heat-stress conditions. Their loss-of-function mutants aca8 aca10 and aca4 aca11 have autoimmunity at normal temperature, and this deregulated immune activation is enhanced by low temperature leading to chilling lethality. Furthermore, these two mutants have an elevated resting [Ca2+]cyt, and a reduction of external Ca2+ lowers [Ca2+]cyt and represses its autoimmunity and cold susceptibility. The aca8 aca10 and the aca4 aca11 mutants are also susceptible to heat, likely resulting from more closed stomata and higher leaf surface temperature compared to the wild type. These observations support a model in which the regulation of resting [Ca2+]cyt is critical to how plants regulate biotic and abiotic responses. 
    more » « less