Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ , and$$x\in \mathbb{R}^{n+1}$$ ,$$r>0$$ , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ where the infimum is taken over all open affine half-spaces$$H^{+}$$ such that$$x \in \partial H^{+}$$ and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ is$$n$$ -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ ,$$\Omega ^{-}$$ are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ and$$r>0$$ , we denote by$$\alpha ^{\pm }(x,r)$$ the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ . We show that, up to a set of$$\mathcal{H}^{n}$$ measure zero,$$x$$ is a tangent point for both$$\partial \Omega ^{+}$$ and$$\partial \Omega ^{-}$$ if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ conjecture of Carleson.
more »
« less
The anisotropic Bernstein problem
Abstract We construct nonlinear entire anisotropic minimal graphs over$$\mathbb{R}^{4}$$ , completing the solution to the anisotropic Bernstein problem. The examples we construct have a variety of growth rates, and our approach both generalizes to higher dimensions and recovers and elucidates known examples of nonlinear entire minimal graphs over$$\mathbb{R}^{n},\, n \geq 8$$ .
more »
« less
- Award ID(s):
- 2143668
- PAR ID:
- 10511787
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Inventiones mathematicae
- Volume:
- 235
- Issue:
- 1
- ISSN:
- 0020-9910
- Page Range / eLocation ID:
- 211 to 232
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Physical experiments and numerical simulations have observed a remarkable stabilizing phenomenon: a background magnetic field stabilizes and dampens electrically conducting fluids. This paper intends to establish this phenomenon as a mathematically rigorous fact on a magnetohydrodynamic (MHD) system with anisotropic dissipation in$$\mathbb R^3$$ . The velocity equation in this system is the 3D Navier–Stokes equation with dissipation only in the$$x_1$$ -direction, while the magnetic field obeys the induction equation with magnetic diffusion in two horizontal directions. We establish that any perturbation near the background magnetic field (0, 1, 0) is globally stable in the Sobolev setting$$H^3({\mathbb {R}}^3)$$ . In addition, explicit decay rates in$$H^2({\mathbb {R}}^3)$$ are also obtained. For when there is no presence of a magnetic field, the 3D anisotropic Navier–Stokes equation is not well understood and the small data global well-posedness in$$\mathbb R^3$$ remains an intriguing open problem. This paper reveals the mechanism of how the magnetic field generates enhanced dissipation and helps to stabilize the fluid.more » « less
-
Abstract Extending computational harmonic analysis tools from the classical setting of regular lattices to the more general setting of graphs and networks is very important, and much research has been done recently. The generalized Haar–Walsh transform (GHWT) developed by Irion and Saito (2014) is a multiscale transform for signals on graphs, which is a generalization of the classical Haar and Walsh–Hadamard transforms. We propose theextendedgeneralized Haar–Walsh transform (eGHWT), which is a generalization of the adapted time–frequency tilings of Thiele and Villemoes (1996). The eGHWT examines not only the efficiency of graph-domain partitions but also that of “sequency-domain” partitionssimultaneously. Consequently, the eGHWT and its associated best-basis selection algorithm for graph signals significantly improve the performance of the previous GHWT with the similar computational cost,$$O(N \log N)$$ , whereNis the number of nodes of an input graph. While the GHWT best-basis algorithm seeks the most suitable orthonormal basis for a given task among more than$$(1.5)^N$$ possible orthonormal bases in$$\mathbb {R}^N$$ , the eGHWT best-basis algorithm can find a better one by searching through more than$$0.618\cdot (1.84)^N$$ possible orthonormal bases in$$\mathbb {R}^N$$ . This article describes the details of the eGHWT best-basis algorithm and demonstrates its superiority using several examples including genuine graph signals as well as conventional digital images viewed as graph signals. Furthermore, we also show how the eGHWT can be extended to 2D signals and matrix-form data by viewing them as a tensor product of graphs generated from their columns and rows and demonstrate its effectiveness on applications such as image approximation.more » « less
-
Abstract For every d\geq 3, we construct a noncompact smooth 𝑑-dimensional Riemannian manifold with strictly positive sectional curvature without isoperimetric sets for any volume below 1.We construct a similar example also for the relative isoperimetric problem in (unbounded) convex sets in \mathbb{R}^{d}.The examples we construct have nondegenerate asymptotic cone.The dimensional constraint d\geq 3is sharp.Our examples exhibit nonexistence of isoperimetric sets only for small volumes; indeed, in nonnegatively curved spaces with nondegenerate asymptotic cones, isoperimetric sets with large volumes always exist.This is the first instance of noncollapsed nonnegatively curved space without isoperimetric sets.more » « less
-
Abstract Consider two half-spaces$$H_1^+$$ and$$H_2^+$$ in$${\mathbb {R}}^{d+1}$$ whose bounding hyperplanes$$H_1$$ and$$H_2$$ are orthogonal and pass through the origin. The intersection$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ is a spherical convex subset of thed-dimensional unit sphere$${\mathbb {S}}^d$$ , which contains a great subsphere of dimension$$d-2$$ and is called a spherical wedge. Choosenindependent random points uniformly at random on$${\mathbb {S}}_{2,+}^d$$ and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$$\log n$$ . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$${\mathbb {S}}_{2,+}^d$$ . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.more » « less
An official website of the United States government

