skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigation of surface roughness, microstructure, and mechanical properties of overhead structures fabricated by wire + arc additive manufacturing
This study aims to investigate surface roughness, microstructure, and mechanical properties of overhead thin-wall structures of stainless steel(SS316L) fabricated by cold metal transfer (CMT)-based wire + arc additive manufacturing (WAAM). In the first stage, single-layer bead experiments were carried out in flat and overhead positions utilizing Box-Behnken experimental design with a range of process parameters (i.e., wire feed rate, travel speed, and weave amplitude). To study the effect of individual process parameters on the bead geometry and identify a process window, analysis of variance(ANOVA) is performed using the bead cross-section measurement data. For single layer bead experiments in flat and overhead position, out of all process parameters, the weave amplitude is the most significant parameter on bead width, whereas travel speed is most significant parameter for bead height. Based on single-layer bead experiments, process parameters for thin wall deposition were identified. In the second stage, two thin-walls were deposited with wire feed rates of 1000 and 1500 mm/min in the overhead position. The surface roughness was measured using cloud point data acquired from the coordinate measuring machine(CMM). The deposited structure with the wire feed rate of 1500 mm/min resulted in better surface quality. It was also observed that, microstructure was composed of austenite and dendritic delta ferrite. The microstructure changed as the deposition height increased. The average microhardness value was measured 183 HV and 187.4 HV for the overhead structures. Average tensile properties of the SS316L overhead structures were comparable to that of SS316L fabricated by other WAAM processes.  more » « less
Award ID(s):
2015693
PAR ID:
10511885
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
The International Journal of Advanced Manufacturing Technology
Volume:
131
Issue:
9-10
ISSN:
0268-3768
Page Range / eLocation ID:
5001 to 5021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wire arc additive manufacturing (WAAM) presents a highly promising alternative to conventional subtractive manufacturing methods to produce metallic components, particularly in the aerospace industry, where there is a demand for 17–4 precipitation-hardened (PH) stainless steel structures. This study focuses on investigating the microstructural characteristics, showing microhardness evaluations, and analyzing the tensile properties of the as-printed parts during the 17–4 PH manufacturing process at different locations and directions. The fabrication is carried out using gas metal wire arc additive manufacturing (GM-WAAM). As a result, it was found that the microstructure of the as-deposited part showed a complex configuration consisting of both finely equiaxed and coarsely formed δ-ferrite phases with vermicular and lathy morphologies. These phases were dispersed inside the martensitic matrix, while a small amount of retained austenite was also present. It was observed that the volume fraction of retained austenite (20–5%) and δ-ferrite phases (15.5–2.5%) decreased gradually from the bottom to the top of the as-deposited wall. This reduction in the fractions of these phases resulted in a progressive increase in both hardness (∼37%) and ultimate tensile strength (UTS) along the building direction. This study successfully fabricates a high-strength and ductile 17–4 PH as-printed part using WAAM. The findings provide evidence supporting the feasibility of employing WAAM for producing defect-free, high-strength components on a large scale while maintaining mechanical properties similar or better than wrought alloy 17–4 PH. 
    more » « less
  2. The 70/30 copper–nickel alloy is used mainly in critical parts with more demanding conditions in marine settings. There is a need for innovative methods that offer fast production and cost-effectiveness in order to supplement current copper–nickel alloy manufacturing processes. In this study, we employ wire arc additive manufacturing (WAAM) to fabricate the 70/30 copper–nickel alloy. The as-built microstructure is characterized by columnar grains with prominent dendrites and chemical segregation in the inter-dendritic area. The aspect ratio of the columnar grain increases with increasing travel speed (TS) at the same wire feed speed (WFS). This is in contrast with the equiaxed grain structure, with a more random orientation, of the conventional sample. The sample built with a WFS of 8 m/min, TS of 1000 mm/min, and a track distance of 3.85 mm exhibits superior corrosion properties in the 3.5 wt% NaCl solution when compared with the conventional sample, as evidenced by a higher film resistance and breakdown potential, along with a lower passive current density of the WAAM sample. The corrosion morphology reveals the critical roles played by the nickel element that is unevenly distributed between the dendrite core and inter-dendritic area. 
    more » « less
  3. Herein, the feasibility of the gas tungsten arc welding‐based wire + arc additive manufacturing process for fabricating thin wall structures of niobium‐1 wt% zirconium (NbZr1) alloy is investigated. Three different heat input conditions (low, medium, and high) have been selected for fabricating it. The microstructure is characterized by using optical microscopy, scanning electron microscopy, X‐ray diffraction, energy‐dispersive spectroscopy, and electron backscattered diffraction (EBSD). The microstructure shows the columnar dendritic structure elongated in the build direction. No cracks or porosity are observed in the structure. Average Vickers hardness for low, medium, and high heat input conditions are 146.6, 162.1, and 163.5 HV, respectively. There is an increasing trend of microhardness value along the deposition height, which can be attributed to the difference in secondary dendritic arm spacing and the formation of precipitates. The tensile strength of the specimen is comparable to the conventional and additively manufactured structures. EBSD analysis confirms that possible subgrains are responsible for good mechanical properties at room temperature. In the majority of the tensile samples, the failure mechanism has been identified as a ductile fracture. The mechanical characteristics fluctuate with locations in each of the thin walls, suggesting anisotropy in the deposits. 
    more » « less
  4. Gas metal arc additive manufacturing (GMA-AM), also known as wire arc additive manufacturing (WAAM), uses an electric arc to melt a wire electrode and deposit objects layer by layer. This study focuses on creating single-pass wall structures using a low-carbon steel wire (ER70S-6) and examining the relationship between pulse frequency and weld geometry, microstructure, and mechanical properties. Microscopic observations showed a typical columnar microstructure with three distinct regions: acicular ferrite, bainite, and allotriomorphic ferrite in the first and last layers, while the mid-region exhibited homogenous polygonal ferrite grains with some pearlite at the grain boundaries. The tensile test results demonstrated a dependency of strength on the applied pulse frequency, with the highest strength (i.e., the ultimate tensile strength of 522 MPa and yield strength of 375 MPa with ductility of ∼52%) achieved in parts processed at a frequency of 100 Hz. Vickers microhardness values revealed uniform hardness in the middle region, consistent with the microstructure observation. Analyzing thermal cycles, coupled with microstructure analysis and continuous cooling transition diagrams, provided insight into how phase and microstructure evolution occurred in low-carbon low-alloy steels processed through PGMA-AM. 
    more » « less
  5. Abstract Wire arc additive manufacturing (WAAM) is an efficient technique for producing medium to large‐size components, due to its accessibility and sustainability in fabricating large‐scale parts with high deposition rates, employing low‐cost and simple equipment, and achieving high material efficiency. Consequently, WAAM has garnered attention across various industrial sectors and experienced significant growth, particularly over the last decade, as it addresses and mitigates challenges within production markets. One of the primary limitations of WAAM is its thermal history during the process, which directly influences grain formation and microstructure heterogeneity in the resulting part. Understanding the thermal cycle of the WAAM process is thus crucial for process improvement. Typically, fabricating a part using WAAM results in a microstructure with three distinct zones along the build direction: an upper zone (thin surface layer) with fine grains, a middle zone dominated by undesirably long and large columnar grains covering more than 90% of the produced part, and a lower zone with smaller to intermediate columnar grains closer to the substrate material. These zones arise from variations in cooling rates, with the middle zone exhibiting the lowest cooling rate due to 2D conduction heat transfer. Consequently, producing a component with a microstructure comprising three different zones, with a high fraction of large and long columnar grains, significantly impacts the final mechanical properties. Therefore, controlling the size and formation of these grain zones plays a key role in improving WAAM. The aim of this work is to investigate the formation of undesired columnar grains in austenitic stainless steel 316L during WAAM and propose a simple hybrid technique by combining WAAM with a hot forging process (with or without interlayer cooling time). This approach targets the disruption of the solidification pattern of columnar grain growth during deposition progression and aims to enhance the microstructure of WAAM components. 
    more » « less