skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-fused and concatenated-ensemble learning for in-situ anomaly detection in wire and arc-based direct energy deposition
Convolutional neural network (CNN), a type of deep learning algorithm, is a powerful tool for analyzing visual images. It has been actively investigated to monitor metal additive manufacturing (AM) processes for quality control and has been proven effective. However, typical CNN algorithms inherently have two issues when used in metal AM processes. First, in many cases, acquiring datasets with sufficient quantity and quality, as well as necessary information, is challenging because of technical difficulties and/or cost intensiveness. Second, determining a near-optimal CNN model takes considerable effort and is time-consuming. This is because the types and quality of datasets can be significantly different with respect to different AM processes and materials. The study proposes a novel concatenated ensemble learning method to obtain a flexible and robust algorithm for in-situ anomaly detection in wire + arc additive manufacturing (WAAM), a type of wire-based direct energy deposition (DED) process. For this, data, as well as machine learning models, were seamlessly integrated to overcome the limitations and difficulties in acquiring sufficient data and finding a near-optimal machine learning model. Using inexpensively obtainable and comprehensive datasets from the WAAM process, the proposed method was investigated and validated. In contrast to the one-dimensional and two-dimensional CNN models’ accuracies of 81.6 % and 88.6 %, respectively, the proposed concatenated ensemble model achieved an accuracy of 98 %.  more » « less
Award ID(s):
2015693
PAR ID:
10511889
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Manufacturing Processes
Volume:
112
Issue:
C
ISSN:
1526-6125
Page Range / eLocation ID:
273 to 289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wire arc additive manufacturing (WAAM) has gained attention as a feasible process in large-scale metal additive manufacturing due to its high deposition rate, cost efficiency, and material diversity. However, WAAM induces a degree of uncertainty in the process stability and the part quality owing to its non-equilibrium thermal cycles and layer-by-layer stacking mechanism. Anomaly detection is therefore necessary for the quality monitoring of the parts. Most relevant studies have applied machine learning to derive data-driven models that detect defects through feature and pattern learning. However, acquiring sufficient data is time- and/or resource-intensive, which introduces a challenge to applying machine learning-based anomaly detection. This study proposes a multisource transfer learning method that generates anomaly detection models for balling defect detection, thus ensuring quality monitoring in WAAM. The proposed method uses convolutional neural network models to extract sufficient image features from multisource materials, then transfers and fine-tunes the models for anomaly detection in the target material. Stepwise learning is applied to extract image features sequentially from individual source materials, and composite learning is employed to assign the optimal frozen ratio for converging transferred and present features. Experiments were performed using a gas tungsten arc welding-based WAAM process to validate the classification accuracy of the models using low-carbon steel, stainless steel, and Inconel. 
    more » « less
  2. Wire arc additive manufacturing is a promising additive manufacturing process because of its high deposition rate, and material diversity. However, the low quality of melted parts is a critical issue, owing to the difficulty in establishing design rules for process–structure–property–performance. Previous studies have resolved this challenge by deriving anomaly detection models for quality monitoring and have largely relied on machine learning by training melt pool image data. Acquiring sufficient data is a key to obtaining reliable models in machine learning; however, an issue arises from concerning the cost intensiveness in high-cost materials. We propose a material-adaptive anomaly detection method to detect balling defects in a target material using property-concatenated transfer learning. First, transfer learing is applied to derive convolutional neural network (CNN)-based models from a source material and transfer them to a target material, wherein data are insufficient and machine learning rarely achieves high performance. Second, material properties are concatenated on transfer learning as additional features onto image features, contrary to typical transfer learning where CNNs only extract image features. We perform experiments in a gas tungsten arc welding system with low-carbon steel (LCS), stainless steel (STS), and inconel (INC) materials. Our models achieve best classification accuracies of 82.95%, 89.47%, and 84.22% when transferring from LCS to STS, LCS to INC, and STS to INC, respectively, compared with 78.03%, 86.37%, and 73.63% obtained using typical transfer learning. The proposed method can effectively resolve the data scarcity by model transfer from sufficient datasets in low-cost materials to rare datasets in high-cost materials. Moreover, it outperforms typical transfer learning because material properties are learned as manufacturing-knowledge features, accounting for melting and hardening characteristics of materials. 
    more » « less
  3. Andrew Yeh-Ching Nee, editor-ion-chief (Ed.)
    Wire arc additive manufacturing (WAAM) has received increasing use in 3D printing because of its high deposition rates suitable for components with large and complex geometries. However, the lower forming accuracy of WAAM than other metal additive manufacturing methods has imposed limitations on manufacturing components with high precision. To resolve this issue, we herein implemented the hybrid manufacturing (HM) technique, which integrated WAAM and subtractive manufacturing (via a milling process), to attain high forming accuracy while taking advantage of both WAAM and the milling process. We describe in this paper the design of a robot-based HM platform in which the WAAM and CNC milling are integrated using two robotic arms: one for WAAM and the other for milling immediately following WAAM. The HM was demonstrated with a thin-walled aluminum 5356 component, which was inspected by X-ray micro-computed tomography (μCT) for porosity visualization. The temperature and cutting forces in the component under milling were acquired for analysis. The surface roughness of the aluminum component was measured to assess the surface quality. In addition, tensile specimens were cut from the components using wire electrical discharge machining (WEDM) for mechanical testing. Both machining quality and mechanical properties were found satisfactory; thus the robot-based HM platform was shown to be suitable for manufacturing high-quality aluminum parts. 
    more » « less
  4. Additive manufacturing (AM) of metals attracts attention because it can produce complex structures in a single step without part-specific tooling. Wire arc additive manufacturing (WAAM), a welding-based method that deposits metal layer by layer, is gaining popularity due to its low cost of operation, feasibility for large-scale part fabrication, and ease of operation. This article presents the fabrication of cylindricalshaped mild steel (ER70S-6) samples with a gas metal arc (MIG)—based hybrid WAAM system. A mechanism for actively cooling the substrate is implemented. Deposition parameters are held constant to evaluate the impact of active cooling on deposition quality, inter-pass cooling time, and internal defects. Surface and volume defects can be seen on the cylindrical sample fabricated without an active cooling setup. Defect quantification and phase analysis are performed. The primary phase formed was α-iron in all samples. Actively cooled deposition cross section showed a 99% decrease of incomplete fusion or porosity, with temperature measured 60 s after deposition averaging 235°C less than non-cooled. Microstructural analysis revealed uniformity along the build direction for actively cooled deposition but non-uniform microstructures without cooling. Hardness decreased by approximately 22HV from the first layer to the final layer in all cases. Property variation can be attributed to the respective processing strategies. The current study has demonstrated that active cooling can reduce production time and porosity while maintaining uniform microstructure along the build direction. Such an approach is expected to enhance the reliability of WAAM-processed parts in the coming days. 
    more » « less
  5. Additive manufacturing (AM) has impacted the manufacturing of complex three-dimensional objects in multiple materials for a wide array of applications. However, additive manufacturing, as an upcoming field, lacks automated and specific design rules for different AM processes. Moreover, the selection of specific AM processes for different geometries requires expert knowledge, which is difficult to replicate. An automated and data-driven system is needed that can capture the AM expert knowledge base and apply it to 3D-printed parts to avoid manufacturability issues. This research aims to develop a data-driven system for AM process selection within the design for additive manufacturing (DFAM) framework for Industry 4.0. A Genetic and Evolutionary Feature Weighting technique was optimized using 3D CAD data as an input to identify the optimal AM technique based on several requirements and constraints. A two-stage model was developed wherein the stage 1 model displayed average accuracies of 70% and the stage 2 model showed higher average accuracies of up to 97.33% based on quantitative feature labeling and augmentation of the datasets. The steady-state genetic algorithm (SSGA) was determined to be the most effective algorithm after benchmarking against estimation of distribution algorithm (EDA) and particle swarm optimization (PSO) algorithms, respectively. The output of this system leads to the identification of optimal AM processes for manufacturing 3D objects. This paper presents an automated design for an additive manufacturing system that is accurate and can be extended to other 3D-printing processes. 
    more » « less