skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parallel developmental changes in children’s production and recognition of line drawings of visual concepts
Childhood is marked by the rapid accumulation of knowledge and the prolific production of drawings. We conducted a systematic study of how children create and recognize line drawings of visual concepts. We recruited 2-10-year-olds to draw 48 categories via a kiosk at a children’s museum, resulting in >37K drawings. We analyze changes in the category-diagnostic information in these drawings using vision algorithms and annotations of object parts. We find developmental gains in children’s inclusion of category-diagnostic information that are not reducible to variation in visuomotor control or effort. Moreover, even unrecognizable drawings contain information about the animacy and size of the category children tried to draw. Using guessing games at the same kiosk, we find that children improve across childhood at recognizing each other’s line drawings. This work leverages vision algorithms to characterize developmental changes in children’s drawings and suggests that these changes reflect refinements in children’s internal representations.  more » « less
Award ID(s):
2047191
PAR ID:
10512015
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How do children’s representations of object categories change as they grow older? As they learn about the world around them, they also express what they know in the drawings they make. Here, we examine drawings as a window into how children represent familiar object categories, and how this changes across childhood. We asked children (age 3-10 years) to draw familiar object categories on an iPad. First, we analyzed their semantic content, finding large and consistent gains in how well children could produce drawings that are recognizable to adults. Second, we quantified their perceptual similarity to adult drawings using a pre-trained deep convolutional neural network, allowing us to visualize the representational layout of object categories across age groups using a common feature basis. We found that the organization of object categories in older children’s drawings were more similar to that of adults than younger children’s drawings. This correspondence was strong in the final layers of the neural network, showing that older children’s drawings tend to capture the perceptual features critical for adult recognition. We hypothesize that this improvement reflects increasing convergence between children’s representations of object categories and that of adults; future work will examine how these age-related changes relate to children’s developing perceptual and motor capacities. Broadly, these findings point to drawing as a rich source of insight into how children represent object concepts. 
    more » « less
  2. How do children’s visual concepts change across childhood, and how might these changes be reflected in their drawings? Here we investigate developmental changes in children’s ability to emphasize the relevant visual distinctions between object categories in their drawings. We collected over 13K drawings from children aged 2-10 years via a free-standing drawing station in a children’s museum. We hypothesized that older children would produce more recognizable drawings, and that this gain in recognizability would not be entirely explained by concurrent development in visuomotor control. To measure recognizability, we applied a pretrained deep convolutional neural network model to extract a high-level feature representation of all drawings, and then trained a multi-way linear classifier on these features. To measure visuomotor control, we developed an automated procedure to measure their ability to accurately trace complex shapes. We found consistent gains in the recognizability of drawings across ages that were not fully explained by children’s ability to accurately trace complex shapes. Furthermore, these gains were accompanied by an increase in how distinct different object categories were in feature space. Overall, these results demonstrate that children’s drawings include more distinctive visual features as they grow older. 
    more » « less
  3. Young children tend to prioritize objects over layouts in their drawings, often juxtaposing “floating” objects in the picture plane instead of grounding those objects in drawn representations of the extended layout. In the present study, we explore whether implicitly directing children’s attention to elements of the extended layout through a drawing’s communicative goal—to indicate the location of a hidden target to someone else—might lead children to draw more layout information. By comparing children’s drawings to a different group of children’s verbal descriptions, moreover, we explore how communicative medium affects children’s inclusion of layout and object information. If attention modulates children’s symbolic communication about layouts and objects, then children should both draw and talk about layouts and objects when they are relevant to the communicative task. If there are challenges or advantages specific to either medium, then children might treat layouts and objects differently when drawing versus describing them. We find evidence for both of these possibilities: Attention affects what children include in symbolic communication, like drawings and language, but children are more concise in their inclusion of relevant layout or object information in language versus drawings. 
    more » « less
  4. The ability to process social information is a critical component of children’s early language and cognitive development. However, as children reach their first birthday, they begin to locomote themselves, dramatically affecting their visual access to this information. How do these postural and locomotor changes affect children’s access to the social information relevant for word-learning? Here, we explore this question by using head-mounted cameras to record 36 infants’ (8-16 months of age) egocentric visual perspective and use computer vision algorithms to estimate the proportion of faces and hands in infants’ environments. We find that infants’ posture and orientation to their caregiver modulates their access to social information, confirming previous work that suggests motoric developments play a significant role in the emergence of children’s linguistic and social capacities. We suggest that the combined use of head-mounted cameras and the application of new computer vision techniques is a promising avenue for understanding the statistics of infants’ visual and linguistic experience. 
    more » « less
  5. Abstract Previous research has established important developmental changes in sleep and memory during early childhood. These changes have been linked separately to brain development, yet few studies have explored their interrelations during this developmental period. The goal of this report was to explore these associations in 200 (100 female) typically developing 4- to 8-year-old children. We examined whether habitual sleep patterns (24-h sleep duration, nap status) were related to children’s performance on a source memory task and hippocampal subfield volumes. Results revealed that, across all participants, after controlling for age, habitual sleep duration was positively related to source memory performance. In addition, in younger (4–6 years, n = 67), but not older (6–8 years, n = 70) children, habitual sleep duration was related to hippocampal head subfield volume (CA2-4/DG). Moreover, within younger children, volume of hippocampal subfields varied as a function of nap status; children who were still napping (n = 28) had larger CA1 volumes in the body compared to children who had transitioned out of napping (n = 39). Together, these findings are consistent with the hypothesis that habitually napping children may have more immature cognitive networks, as indexed by hippocampal integrity. Furthermore, these results shed additional light on why sleep is important during early childhood, a period of substantial brain development. 
    more » « less