The interaction between larval host plant quality and temperature can influence the short-term physiological rates and life-history traits of insect herbivores. These factors can vary locally, resulting in local adaptation in responses to diet and temperature, but the comparison of these interactions between populations is infrequently carried out. In this study, we examine how the macronutrient ratio of an artificial diet determines the larval growth, development, and survival of larvalPieris rapae(Lepidoptera: Pieridae) at different temperatures between two invasive North American populations from different climatic regions. We conducted a fully factorial experiment with three temperature treatments (18°C, 25°C, and 32°C) and three artificial diet treatments varying in terms of the ratio of protein to carbohydrate (low protein, balanced, and high protein). The effects of diet on life-history traits were greater at lower temperatures, but these differed between populations. Larvae from the subtropical population had reduced survival to pupation on the low-protein diet in the cold temperature treatment, whereas larval survival for the temperate population was equally high for all temperature and diet treatments. Overall, both populations performed more poorly (i.e., they showed slower rates of consumption, growth, and development, and had a smaller pupal mass) in the diet with the low protein ratio, but larvae from the temperate population were less sensitive to diet ratio changes at all temperatures. Our results confirm that the physiological and life-history consequences of imbalanced nutrition for insect herbivores may depend on developmental temperatures, and that different geographic populations ofP. rapaewithin North America vary in their sensitivity to nutritional balance and temperature.
more »
« less
The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees
In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, Apis mellifera, nurse bees provision food to developing larvae, directly moderating growth rates and caste development. However, the eusocial nature of honey bees makes nutritional studies challenging, because diet components cannot be systematically manipulated in the hive. Using in vitro rearing, we investigated the roles and interactions between carbohydrate and protein content on larval survival, growth, and development in A. mellifera. We applied a geometric framework to determine how these two nutritional components interact across nine artificial diets. Honey bees successfully completed larval development under a wide range of protein and carbohydrate contents, with the medium protein (∼5%) diet having the highest survival. Protein and carbohydrate both had significant and non-linear effects on growth rate, with the highest growth rates observed on a medium-protein, low-carbohydrate diet. Diet composition did not have a statistically significant effect on development time. These results confirm previous findings that protein and carbohydrate content affect the growth of A. mellifera larvae. However, this study identified an interaction between carbohydrate and protein content that indicates a low-protein, high-carb diet has a negative effect on larval growth and survival. These results imply that worker recruitment in the hive would decline under low protein conditions, even when nectar abundance or honey stores are sufficient.
more »
« less
- Award ID(s):
- 1557940
- PAR ID:
- 10229272
- Publisher / Repository:
- The Company of Biologists
- Date Published:
- Journal Name:
- Biology Open
- ISSN:
- 2046-6390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae.more » « less
-
Abstract In temperate climates, honey bees rely on stored carbohydrates to sustain them throughout the winter. In nature, honey serves as the bees’ source of carbohydrates, but when managed, beekeepers often harvest honey and replace it with cheaper, artificial feed. The effects of alternative carbohydrate sources on colony survival, strength, and individual bee metabolic health are poorly understood. We assessed the impacts of carbohydrate diets (honey, sucrose syrup, high-fructose corn syrup, and invert syrup) on colony winter survival, population size, and worker bee nutritional state (i.e., fat content and gene expression of overwintered bees and emerging callow bees). We observed a nonsignificant trend for greater survival and larger adult population size among colonies overwintered on honey compared to the artificial feeds, with colonies fed high-fructose corn syrup performing particularly poorly. These trends were mirrored in individual bee physiology, with bees from colonies fed honey having significantly larger fat bodies than those from colonies fed high-fructose corn syrup. For bees fed honey or sucrose, we also observed gene expression profiles consistent with a higher nutritional state, associated with physiologically younger individuals. That is, there was significantly higher expression of vitellogenin and insulin-like peptide 2 and lower expression of insulin-like peptide 1 and juvenile hormone acid methyltransferase in the brains of bees that consumed honey or sucrose syrup relative to those that consumed invert syrup or high-fructose corn syrup. These findings further our understanding of the physiological implications of carbohydrate nutrition in honey bees and have applied implications for colony management.more » « less
-
Abstract Developmental plasticity can allow the exploitation of alternative diets. While such flexibility during early life is often adaptive, it can leave a legacy in later life that alters the overall health and fitness of an individual. Species of the spadefoot toad genusSpeaare uniquely poised to address such carryover effects because their larvae can consume drastically different diets: their ancestral diet of detritus or a derived shrimp diet. Here, we useSpeabombifronsto assess the effects of developmental plasticity in response to larval diet type and nutritional stress on juvenile behaviors and stress axis reactivity. We find that, in an open‐field assay, juveniles fed shrimp as larvae have longer latencies to move, avoid prey items more often, and have poorer prey‐capture abilities. While juveniles fed shrimp as larvae are more exploratory, this effect disappears if they also experienced a temporary nutritional stressor during early life. The larval shrimp diet additionally impairs juvenile jumping performance. Finally, larvae that were fed shrimp under normal nutritional conditions produce juveniles with higher overall glucocorticoid levels, and larvae that were fed shrimp and experienced a temporary nutritional stressor produce juveniles with higher stress‐induced glucocorticoid levels. Thus, while it has been demonstrated that consuming the novel, alternative diet can be adaptive for larvae in nature, doing so has marked effects on juvenile phenotypes that may recalibrate an individual's overall fitness. Given that organisms often utilize diverse diets in nature, our study underscores the importance of considering how diet type interacts with early‐life nutritional adversity to influence subsequent life stages.more » « less
-
Females of the Northern house mosquito, Culex pipiens, enter an overwintering dormancy, or diapause, in response to short day lengths and low environmental temperatures. Diapausing female mosquitoes feed exclusively on sugar-rich products rather than human or animal blood, thereby reducing disease transmission. During diapause, Major Royal Jelly Protein 1 (MRJP1) is upregulated in females of Cx. pipiens. This protein is highly abundant in royal jelly, a substance produced by honey bees (Apis mellifera), that is fed to future queens throughout larval development and stimulates longevity and fecundity. However, the role of MRJP1 in Cx. pipiens is unknown. We investigated how supplementing the diets of both diapausing and nondiapausing females of Cx. pipiens with royal jelly affects gene expression, egg follicle length, fat content, protein content, longevity, and metabolic profile. We found that feeding royal jelly to long day-reared females significantly reduced the egg follicle lengths of females and switched their metabolic profiles to be similar to diapausing females. In contrast, feeding royal jelly to short day-reared females significantly reduced lifespan and switched their metabolic profile to be similar nondiapausing mosquitoes. Moreover, RNAi directed against MRJPI significantly increased egg follicle length of short day-reared females, suggesting that these females averted diapause, although RNAi against MRJP1 also extended the lifespan of short day-reared females. Taken together, our data show that consuming royal jelly reverses the seasonal responses of Cx. pipiens and that these responses are likely mediated in part by MRJP1.more » « less