skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 9, 2025

Title: Observation of Nagaoka polarons in a Fermi–Hubbard quantum simulator
Quantum interference can deeply alter the nature of many-body phases of matter1. In the case of the Hubbard model, Nagaoka proved that introducing a single itinerant charge can transform a paramagnetic insulator into a ferromagnet through path interference2–4. However, a microscopic observation of this kinetic magnetism induced by individually imaged dopants has been so far elusive. Here we demonstrate the emergence of Nagaoka polarons in a Hubbard system realized with strongly interacting fermions in a triangular optical lattice5,6. Using quantum gas microscopy, we image these polarons as extended ferromagnetic bubbles around particle dopants arising from the local interplay of coherent dopant motion and spin exchange. By contrast, kinetic frustration due to the triangular geometry promotes antiferromagnetic polarons around hole dopants7. Our work augurs the exploration of exotic quantum phases driven by charge motion in strongly correlated systems and over sizes that are challenging for numerical simulation8–10.  more » « less
Award ID(s):
2317134 2118310
PAR ID:
10512133
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature
Volume:
629
Issue:
8011
ISSN:
0028-0836
Page Range / eLocation ID:
317 to 322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions. However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials. 
    more » « less
  2. Transition metal oxides such as BiVO 4 are promising photoelectrode materials for solar-to-fuel conversion applications. However, their performance is limited by the low carrier mobility (especially electron mobility) due to the formation of small polarons. Recent experimental studies have shown improved carrier mobility and conductivity by atomic doping; however the underlying mechanism is not understood. A fundamental atomistic-level understanding of the effects on small polaron transport is critical to future material design with high conductivity. We studied the small polaron hopping mobility in pristine and doped BiVO 4 by combining Landau–Zener theory and kinetic Monte Carlo (kMC) simulation fully from first-principles, and investigated the effect of dopant–polaron interactions on the mobility. We found that polarons are spontaneously formed at V in both pristine and Mo/W doped BiVO 4 , which can only be described correctly by density functional theory (DFT) with the Hubbard correction (DFT+U) or hybrid exchange-correlation functional but not local or semi-local functionals. We found that DFT+U and dielectric dependant hybrid (DDH) functionals give similar electron hopping barriers, which are also similar between the room temperature monoclinic phase and the tetragonal phase. The calculated electron mobility agrees well with experimental values, which is around 10 −4 cm 2 V −1 s −1 . We found that the electron polaron transport in BiVO 4 is neither fully adiabatic nor nonadiabatic, and the first and second nearest neighbor hoppings have significantly different electronic couplings between two hopping centers that lead to different adiabaticity and prefactors in the charge transfer rate, although they have similar hopping barriers. Without considering the detailed adiabaticity through Landau–Zener theory, one may get qualitatively wrong carrier mobility. We further computed polaron mobility in the presence of different dopants and showed that Cr substitution of V is an electron trap while Mo and W are “repulsive” centers, mainly due to the minimization of local lattice expansion by dopants and electron polarons. The dopants with “repulsive” interactions to polarons are promising for mobility improvement due to larger wavefunction overlap and delocalization of locally concentrated polarons. 
    more » « less
  3. The mechanism and the nature of the species formed by molecular doping of the model polymer poly(3-hexylthiophene) (P3HT) in its regioregular (rre-) and regiorandom (rra-) forms in solution are investigated for three different dopants: the prototypical π-electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), the strong Lewis acid tris(pentafluorophenyl)borane (BCF), and the strongly oxidizing complex molybdenum tris[1-(methoxycarbonyl)-2-(trifluoromethyl)-ethane-1,2-dithiolene] (Mo(tfd-CO2Me)3). In a combined optical and electron paramagnetic resonance study, we show that the doping of rreP3HT in solution occurs by integer charge transfer, resulting in the formation of P3HT radical cations (polarons) for all the dopants considered here. Remarkably, despite the different chemical nature of the dopants and dopant-polymer interaction, the formed polarons exhibit essentially identical optical absorption spectra. The situation is very different for the doping of rraP3HT, where we observe the formation of a charge-transfer complex with F4TCNQ and formation of a “localized” P3HT polaron on non-aggregated chains upon doping with BCF, while there is no indication of dopant-induced species in case of Mo(tfd-CO2Me)3. We estimate the ionization efficiency of the respective dopants for the two polymers in solution and report the molar extinction coefficient spectra of the three different species. Finally, we observe increased spin delocalization in regioregular compared to regiorandom P3HT by electron nuclear double resonance, suggesting that the ability of the charge to delocalize on aggregates of planarized polymer backbones plays a significant role in determining the doping mechanism. 
    more » « less
  4. We study a simple electron-phonon model on square and triangular versions of the Lieb lattice using an asymptotically exact strong coupling analysis. At zero temperature and electron density n 1/4 1 (one electron per unit cell), for various ranges of parameters in the model, we exploit a mapping to the quantum dimer model to establish the existence of a spin-liquid phase with Z(2) topological order (on the triangular lattice) and a multicritical line corresponding to a quantum critical spin liquid (on the square lattice). In the remaining part of the phase diagram, we find a host of charge-density-wave phases (valence-bond solids), a conventional s-wave superconducting phase, and with the addition of a small Hubbard U to tip the balance, a phonon-induced d-wave superconducting phase. Under a special condition, we find a hidden pseudospin SUo2 thorn symmetry that implies an exact constraint on the superconducting order parameters. 
    more » « less
  5. Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole–assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model. 
    more » « less