A new efficient ensemble prediction strategy is developed for a multiscale turbulent model framework with emphasis on the nonlinear interactions between large and small-scale variables. The high computational cost in running large ensemble simulations of high-dimensional equations is effectively avoided by adopting a random batch decomposition of the wide spectrum of the fluctuation states, which is a characteristic feature of the multiscale turbulent systems. The time update of each ensemble sample is then only subject to a small portion of the small-scale fluctuation modes in one batch, while the true model dynamics with multiscale coupling is respected by frequent random resampling of the batches at each time updating step. We investigate both theoretical and numerical properties of the proposed method. First, the convergence of statistical errors in the random batch model approximation is shown rigorously independent of the sample size and full dimension of the system. Next, the forecast skill of the computational algorithm is tested on two representative models of turbulent flows exhibiting many key statistical phenomena with a direct link to realistic turbulent systems. The random batch method displays robust performance in capturing a series of crucial statistical features with general interests, including highly non-Gaussian fat-tailed probability distributions and intermittent bursts of instability, while requires a much lower computational cost than the direct ensemble approach. The efficient random batch method also facilitates the development of new strategies in uncertainty quantification and data assimilation for a wide variety of general complex turbulent systems in science and engineering.
more »
« less
Iterative Ensemble Smoothers for Data Assimilation in Coupled Nonlinear Multiscale Models
Abstract This paper identifies and explains particular differences and properties of adjoint-free iterative ensemble methods initially developed for parameter estimation in petroleum models. The aim is to demonstrate the methods’ potential for sequential data assimilation in coupled and multiscale unstable dynamical systems. For this study, we have introduced a new nonlinear and coupled multiscale model based on two Kuramoto–Sivashinsky equations operating on different scales where a coupling term relaxes the two model variables toward each other. This model provides a convenient testbed for studying data assimilation in highly nonlinear and coupled multiscale systems. We show that the model coupling leads to cross covariance between the two models’ variables, allowing for a combined update of both models. The measurements of one model’s variable will also influence the other and contribute to a more consistent estimate. Second, the new model allows us to examine the properties of iterative ensemble smoothers and assimilation updates over finite-length assimilation windows. We discuss the impact of varying the assimilation windows’ length relative to the model’s predictability time scale. Furthermore, we show that iterative ensemble smoothers significantly improve the solution’s accuracy compared to the standard ensemble Kalman filter update. Results and discussion provide an enhanced understanding of the ensemble methods’ potential implementation and use in operational weather- and climate-prediction systems.
more »
« less
- Award ID(s):
- 2220201
- PAR ID:
- 10512183
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 152
- Issue:
- 6
- ISSN:
- 0027-0644
- Format(s):
- Medium: X Size: p. 1277-1301
- Size(s):
- p. 1277-1301
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Iterative ensemble filters and smoothers are now commonly used for geophysical models. Some of these methods rely on a factorization of the observation likelihood function to sample from a posterior density through a set of “tempered” transitions to ensemble members. For Gaussian‐based data assimilation methods, tangent linear versions of nonlinear operators can be relinearized between iterations, thus leading to a solution that is less biased than a single‐step approach. This study adopts similar iterative strategies for a localized particle filter (PF) that relies on the estimation of moments to adjust unobserved variables based on importance weights. This approach builds off a “regularization” of the local PF, which forces weights to be more uniform through heuristic means. The regularization then leads to an adaptive tempering, which can also be combined with filter updates from parametric methods, such as ensemble Kalman filters. The role of iterations is analyzed by deriving the localized posterior probability density assumed by current local PF formulations and then examining how single‐step and tempered PFs sample from this density. From experiments performed with a low‐dimensional nonlinear system, the iterative and hybrid strategies show the largest benefits in observation‐sparse regimes, where only a few particles contain high likelihoods and prior errors are non‐Gaussian. This regime mimics specific applications in numerical weather prediction, where small ensemble sizes, unresolved model error, and highly nonlinear dynamics lead to prior uncertainty that is larger than measurement uncertainty.more » « less
-
Discovering the underlying dynamics of complex systems from data is an important practical topic. Constrained optimization algorithms are widely utilized and lead to many successes. Yet, such purely data-driven methods may bring about incorrect physics in the presence of random noise and cannot easily handle the situation with incomplete data. In this paper, a new iterative learning algorithm for complex turbulent systems with partial observations is developed that alternates between identifying model structures, recovering unobserved variables, and estimating parameters. First, a causality-based learning approach is utilized for the sparse identification of model structures, which takes into account certain physics knowledge that is pre-learned from data. It has unique advantages in coping with indirect coupling between features and is robust to stochastic noise. A practical algorithm is designed to facilitate causal inference for high-dimensional systems. Next, a systematic nonlinear stochastic parameterization is built to characterize the time evolution of the unobserved variables. Closed analytic formula via efficient nonlinear data assimilation is exploited to sample the trajectories of the unobserved variables, which are then treated as synthetic observations to advance a rapid parameter estimation. Furthermore, the localization of the state variable dependence and the physics constraints are incorporated into the learning procedure. This mitigates the curse of dimensionality and prevents the finite time blow-up issue. Numerical experiments show that the new algorithm identifies the model structure and provides suitable stochastic parameterizations for many complex nonlinear systems with chaotic dynamics, spatiotemporal multiscale structures, intermittency, and extreme events.more » « less
-
We present a non‐Gaussian ensemble data assimilation method based on the maximum‐likelihood ensemble filter, which allows for any combination of Gaussian, lognormal, and reverse lognormal errors in both the background and the observations. The technique is fully nonlinear, does not require a tangent linear model, and uses a Hessian preconditioner to minimise the cost function efficiently in ensemble space. When the Gaussian assumption is relaxed, the results show significant improvements in the analysis skill within two atmospheric toy models, and the performance of data assimilation systems for (semi)bounded variables is expected to improve.more » « less
-
We propose a high-order stochastic–statistical moment closure model for efficient ensemble prediction of leading-order statistical moments and probability density functions in multiscale complex turbulent systems. The statistical moment equations are closed by a precise calibration of the high-order feedbacks using ensemble solutions of the consistent stochastic equations, suitable for modeling complex phenomena including non-Gaussian statistics and extreme events. To address challenges associated with closely coupled spatiotemporal scales in turbulent states and expensive large ensemble simulation for high-dimensional systems, we introduce efficient computational strategies using the random batch method (RBM). This approach significantly reduces the required ensemble size while accurately capturing essential high-order structures. Only a small batch of small-scale fluctuation modes is used for each time update of the samples, and exact convergence to the full model statistics is ensured through frequent resampling of the batches during time evolution. Furthermore, we develop a reduced-order model to handle systems with really high dimensions by linking the large number of small-scale fluctuation modes to ensemble samples of dominant leading modes. The effectiveness of the proposed models is validated by numerical experiments on the one-layer and two-layer Lorenz ‘96 systems, which exhibit representative chaotic features and various statistical regimes. The full and reduced-order RBM models demonstrate uniformly high skill in capturing the time evolution of crucial leading-order statistics, non-Gaussian probability distributions, while achieving significantly lower computational cost compared to direct Monte-Carlo approaches. The models provide effective tools for a wide range of real-world applications in prediction, uncertainty quantification, and data assimilation.more » « less
An official website of the United States government
