A new efficient ensemble prediction strategy is developed for a multiscale turbulent model framework with emphasis on the nonlinear interactions between large and small-scale variables. The high computational cost in running large ensemble simulations of high-dimensional equations is effectively avoided by adopting a random batch decomposition of the wide spectrum of the fluctuation states, which is a characteristic feature of the multiscale turbulent systems. The time update of each ensemble sample is then only subject to a small portion of the small-scale fluctuation modes in one batch, while the true model dynamics with multiscale coupling is respected by frequent random resampling of the batches at each time updating step. We investigate both theoretical and numerical properties of the proposed method. First, the convergence of statistical errors in the random batch model approximation is shown rigorously independent of the sample size and full dimension of the system. Next, the forecast skill of the computational algorithm is tested on two representative models of turbulent flows exhibiting many key statistical phenomena with a direct link to realistic turbulent systems. The random batch method displays robust performance in capturing a series of crucial statistical features with general interests, including highly non-Gaussian fat-tailed probability distributions and intermittent bursts of instability, while requires a much lower computational cost than the direct ensemble approach. The efficient random batch method also facilitates the development of new strategies in uncertainty quantification and data assimilation for a wide variety of general complex turbulent systems in science and engineering.
more »
« less
High-order moment closure models with random batch method for efficient computation of multiscale turbulent systems
We propose a high-order stochastic–statistical moment closure model for efficient ensemble prediction of leading-order statistical moments and probability density functions in multiscale complex turbulent systems. The statistical moment equations are closed by a precise calibration of the high-order feedbacks using ensemble solutions of the consistent stochastic equations, suitable for modeling complex phenomena including non-Gaussian statistics and extreme events. To address challenges associated with closely coupled spatiotemporal scales in turbulent states and expensive large ensemble simulation for high-dimensional systems, we introduce efficient computational strategies using the random batch method (RBM). This approach significantly reduces the required ensemble size while accurately capturing essential high-order structures. Only a small batch of small-scale fluctuation modes is used for each time update of the samples, and exact convergence to the full model statistics is ensured through frequent resampling of the batches during time evolution. Furthermore, we develop a reduced-order model to handle systems with really high dimensions by linking the large number of small-scale fluctuation modes to ensemble samples of dominant leading modes. The effectiveness of the proposed models is validated by numerical experiments on the one-layer and two-layer Lorenz ‘96 systems, which exhibit representative chaotic features and various statistical regimes. The full and reduced-order RBM models demonstrate uniformly high skill in capturing the time evolution of crucial leading-order statistics, non-Gaussian probability distributions, while achieving significantly lower computational cost compared to direct Monte-Carlo approaches. The models provide effective tools for a wide range of real-world applications in prediction, uncertainty quantification, and data assimilation.
more »
« less
- Award ID(s):
- 2106988
- PAR ID:
- 10530682
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Chaos: An Interdisciplinary Journal of Nonlinear Science
- Volume:
- 33
- Issue:
- 10
- ISSN:
- 1054-1500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Complex nonlinear turbulent dynamical systems are ubiquitous in many areas. Quantifying the model error and model uncertainty plays an important role in understanding and predicting complex dynamical systems. In the first part of this article, a simple information criterion is developed to assess the model error in imperfect models. This effective information criterion takes into account the information in both the equilibrium statistics and the temporal autocorrelation function, where the latter is written in the form of the spectrum density that permits the quantification via information theory. This information criterion facilitates the study of model reduction, stochastic parameterizations, and intermittent events. In the second part of this article, a new efficient method is developed to improve the computation of the linear response via the Fluctuation Dissipation Theorem (FDT). This new approach makes use of a Gaussian Mixture (GM) to describe the unperturbed probability density function in high dimensions and avoids utilizing Gaussian approximations in computing the statistical response, as is widely used in the quasi-Gaussian (qG) FDT. Testing examples show that this GM FDT outperforms qG FDT in various strong non-Gaussian regimes.more » « less
-
Abstract Material elements – which are lines, surfaces, or volumes behaving as passive, non-diffusive markers – provide an inherently geometric window into the intricate dynamics of chaotic flows. Their stretching and folding dynamics has immediate implications for mixing in the oceans or the atmosphere, as well as the emergence of self-sustained dynamos in astrophysical settings. Here, we uncover robust statistical properties of an ensemble of material loops in a turbulent environment. Our approach combines high-resolution direct numerical simulations of Navier-Stokes turbulence, stochastic models, and dynamical systems techniques to reveal predictable, universal features of these complex objects. We show that the loop curvature statistics become stationary through a dynamical formation process of high-curvature folds, leading to distributions with power-law tails whose exponents are determined by the large-deviations statistics of finite-time Lyapunov exponents of the flow. This prediction applies to advected material lines in a broad range of chaotic flows. To complement this dynamical picture, we confirm our theory in the analytically tractable Kraichnan model with an exact Fokker-Planck approach.more » « less
-
Advanced measurement techniques and high-performance computing have made large data sets available for a range of turbulent flows in engineering applications. Drawing on this abundance of data, dynamical models that reproduce structural and statistical features of turbulent flows enable effective model-based flow control strategies. This review describes a framework for completing second-order statistics of turbulent flows using models based on the Navier–Stokes equations linearized around the turbulent mean velocity. Dynamical couplings between states of the linearized model dictate structural constraints on the statistics of flow fluctuations. Colored-in-time stochastic forcing that drives the linearized model is then sought to account for and reconcile dynamics with available data (that is, partially known statistics). The number of dynamical degrees of freedom that are directly affected by stochastic excitation is minimized as a measure of model parsimony. The spectral content of the resulting colored-in-time stochastic contribution can alternatively arise from a low-rank structural perturbation of the linearized dynamical generator, pointing to suitable dynamical corrections that may account for the absence of the nonlinear interactions in the linearized model.more » « less
-
Predicting the process of porosity-based ductile damage in polycrystalline metallic materials is an essential practical topic. Ductile damage and its precursors are represented by extreme values in stress and material state quantities, the spatial probability density function (PDF) of which are highly non-Gaussian with strong fat tails. Traditional deterministic forecasts utilizing sophisticated continuum-based physical models generally lack in representing the statistics of structural evolution during material deformation. Computational tools which do represent complex structural evolution are typically expensive. The inevitable model error and the lack of uncertainty quantification may also induce significant forecast biases, especially in predicting the extreme events associated with ductile damage. In this paper, a data-driven statistical reduced-order modeling framework is developed to provide a probabilistic forecast of the deformation process of a polycrystal aggregate leading to porosity-based ductile damage with uncertainty quantification. The framework starts with computing the time evolution of the leading few moments of specific state variables from the spatiotemporal solution of full- field polycrystal simulations. Then a sparse model identification algorithm based on causation entropy, including essential physical constraints, is utilized to discover the governing equations of these moments. An approximate solution of the time evolution of the PDF is obtained from the predicted moments exploiting the maximum entropy principle. Numerical experiments based on polycrystal realizations of a representative body-centered cubic (BCC) tantalum illustrate a skillful reduced-order model in characterizing the time evolution of the non-Gaussian PDF of the von Mises stress and quantifying the probability of extreme events. The learning process also reveals that the mean stress is not simply an additive forcing to drive the higher-order moments and extreme events. Instead, it interacts with the latter in a strongly nonlinear and multiplicative fashion. In addition, the calibrated moment equations provide a reasonably accurate forecast when applied to the realizations outside the training data set, indicating the robustness of the model and the skill for extrapolation. Finally, an information-based measurement is employed to quantitatively justify that the leading four moments are sufficient to characterize the crucial highly non-Gaussian features throughout the entire deformation history considered.more » « less
An official website of the United States government

