The strength and persistence of the tropical carbon sink hinges on the long‐term responses of woody growth to climatic variations and increasing CO2. However, the sensitivity of tropical woody growth to these environmental changes is poorly understood, leading to large uncertainties in growth predictions. Here, we used tree ring records from a Southeast Asian tropical forest to constrain ED2.2‐hydro, a terrestrial biosphere model with explicit vegetation demography. Specifically, we assessed individual‐level woody growth responses to historical climate variability and increases in atmospheric CO2(Ca). When forced with historical Ca, ED2.2‐hydro reproduced the magnitude of increases in intercellular CO2concentration (a major determinant of photosynthesis) estimated from tree ring carbon isotope records. In contrast, simulated growth trends were considerably larger than those obtained from tree rings, suggesting that woody biomass production efficiency (WBPE = woody biomass production:gross primary productivity) was overestimated by the model. The estimated WBPE decline under increasing Cabased on model‐data discrepancy was comparable to or stronger than (depending on tree species and size) the observed WBPE changes from a multi‐year mature‐forest CO2fertilization experiment. In addition, we found that ED2.2‐hydro generally overestimated climatic sensitivity of woody growth, especially for late‐successional plant functional types. The model‐data discrepancy in growth sensitivity to climate was likely caused by underestimating WBPE in hot and dry years due to commonly used model assumptions on carbon use efficiency and allocation. To our knowledge, this is the first study to constrain model predictions of individual tree‐level growth sensitivity to Caand climate against tropical tree‐ring data. Our results suggest that improving model processes related to WBPE is crucial to obtain better predictions of tropical forest responses to droughts and increasing Ca. More accurate parameterization of WBPE will likely reduce the stimulation of woody growth by Carise predicted by biosphere models.
This content will become publicly available on December 1, 2024
Theory predicts that rising CO2increases global photosynthesis, a process known as CO2fertilization, and that this is responsible for much of the current terrestrial carbon sink. The estimated magnitude of the historic CO2fertilization, however, differs by an order of magnitude between long-term proxies, remote sensing-based estimates and terrestrial biosphere models. Here we constrain the likely historic effect of CO2on global photosynthesis by combining terrestrial biosphere models, ecological optimality theory, remote sensing approaches and an emergent constraint based on global carbon budget estimates. Our analysis suggests that CO2fertilization increased global annual terrestrial photosynthesis by 13.5 ± 3.5% or 15.9 ± 2.9 PgC (mean ± s.d.) between 1981 and 2020. Our results help resolve conflicting estimates of the historic sensitivity of global terrestrial photosynthesis to CO2and highlight the large impact anthropogenic emissions have had on ecosystems worldwide.
more » « less- Award ID(s):
- 2045968
- NSF-PAR ID:
- 10512262
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Nature Climate Change
- Volume:
- 13
- Issue:
- 12
- ISSN:
- 1758-678X
- Page Range / eLocation ID:
- 1376 to 1381
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Robust estimates of CO2budget, CO2exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally different approaches: “top‐down” atmospheric inversions and “bottom‐up” biosphere models. Since the first studies were undertaken, these approaches have shown an increasing level of agreement, but disagreements in some regions still persist, in part because they do not estimate the same quantity of atmosphere–biosphere CO2exchange. Here, we conducted a thorough comparison of CO2budgets at multiple scales and from multiple methods to assess the current state of the science in estimating CO2budgets. Our set of atmospheric inversions and biosphere models, which were adjusted for a consistent flux definition, showed a high level of agreement for global and hemispheric CO2budgets in the 2000s. Regionally, improved agreement in CO2budgets was notable for North America and Southeast Asia. However, large gaps between the two methods remained in East Asia and South America. In other regions, Europe, boreal Asia, Africa, South Asia, and Oceania, it was difficult to determine whether those regions act as a net sink or source because of the large spread in estimates from atmospheric inversions. These results highlight two research directions to improve the robustness of CO2budgets: (a) to increase representation of processes in biosphere models that could contribute to fill the budget gaps, such as forest regrowth and forest degradation; and (b) to reduce sink–source compensation between regions (dipoles) in atmospheric inversion so that their estimates become more comparable. Advancements on both research areas will increase the level of agreement between the top‐down and bottom‐up approaches and yield more robust knowledge of regional CO2budgets.
-
Abstract Plants with the C4photosynthesis pathway typically respond to climate change differently from more common C3-type plants, due to their distinct anatomical and biochemical characteristics. These different responses are expected to drive changes in global C4and C3vegetation distributions. However, current C4vegetation distribution models may not predict this response as they do not capture multiple interacting factors and often lack observational constraints. Here, we used global observations of plant photosynthetic pathways, satellite remote sensing, and photosynthetic optimality theory to produce an observation-constrained global map of C4vegetation. We find that global C4vegetation coverage decreased from 17.7% to 17.1% of the land surface during 2001 to 2019. This was the net result of a reduction in C4natural grass cover due to elevated CO2favoring C3-type photosynthesis, and an increase in C4crop cover, mainly from corn (maize) expansion. Using an emergent constraint approach, we estimated that C4vegetation contributed 19.5% of global photosynthetic carbon assimilation, a value within the range of previous estimates (18–23%) but higher than the ensemble mean of dynamic global vegetation models (14 ± 13%; mean ± one standard deviation). Our study sheds insight on the critical and underappreciated role of C4plants in the contemporary global carbon cycle.
-
Abstract Drought is often thought to reduce ecosystem photosynthesis. However, theory suggests there is potential for increased photosynthesis during meteorological drought, especially in energy-limited ecosystems. Here, we examine the response of photosynthesis (gross primary productivity, GPP) to meteorological drought across the water-energy limitation spectrum. We find a consistent increase in eddy covariance GPP during spring drought in energy-limited ecosystems (83% of the energy-limited sites). Half of spring GPP sensitivity to precipitation was predicted solely from the wetness index (R2 = 0.47,
p < 0.001), with weaker relationships in summer and fall. Our results suggest GPP increases during spring drought for 55% of vegetated Northern Hemisphere lands ( >30° N). We then compare these results to terrestrial biosphere model outputs and remote sensing products. In contrast to trends detected in eddy covariance data, model mean GPP always declined under spring precipitation deficits after controlling for air temperature and light availability. While remote sensing products captured the observed negative spring GPP sensitivity in energy-limited ecosystems, terrestrial biosphere models proved insufficiently sensitive to spring precipitation deficits. -
Abstract Anthropogenic nitrogen deposition is widely considered to increase CO2sequestration by land plants on a global scale. Here, we demonstrate that bedrock nitrogen weathering contributes significantly more to nitrogen‐carbon interactions than anthropogenic nitrogen deposition. This working hypothesis is based on the introduction of empirical results into a global biogeochemical simulation model over the time period of the mid‐1800s to the end of the 21st century. Our findings suggest that rock nitrogen inputs have contributed roughly 2–11 times more to plant CO2capture than nitrogen deposition inputs since pre‐industrial times. Climate change projections based on RCP 8.5 show that rock nitrogen inputs and biological nitrogen fixation contribute 2–5 times more to terrestrial carbon uptake than anthropogenic nitrogen deposition though year 2101. Future responses of rock N inputs on plant CO2capture rates are more signficant at higher latitudes and in mountainous environments, where geological and climate factors promote higher rock weathering rates. The enhancement of plant CO2uptake via rock nitrogen weathering partially resolves nitrogen‐carbon discrepancies in Earth system models and offers an alternative explanation for lack of progressive nitrogen limitation in the terrestrial biosphere. We conclude that natural N inputs impart major control over terrestrial CO2sequestration in Earth’s ecosystems.