skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increased photosynthesis during spring drought in energy-limited ecosystems
Abstract Drought is often thought to reduce ecosystem photosynthesis. However, theory suggests there is potential for increased photosynthesis during meteorological drought, especially in energy-limited ecosystems. Here, we examine the response of photosynthesis (gross primary productivity, GPP) to meteorological drought across the water-energy limitation spectrum. We find a consistent increase in eddy covariance GPP during spring drought in energy-limited ecosystems (83% of the energy-limited sites). Half of spring GPP sensitivity to precipitation was predicted solely from the wetness index (R2 = 0.47,p < 0.001), with weaker relationships in summer and fall. Our results suggest GPP increases during spring drought for 55% of vegetated Northern Hemisphere lands ( >30° N). We then compare these results to terrestrial biosphere model outputs and remote sensing products. In contrast to trends detected in eddy covariance data, model mean GPP always declined under spring precipitation deficits after controlling for air temperature and light availability. While remote sensing products captured the observed negative spring GPP sensitivity in energy-limited ecosystems, terrestrial biosphere models proved insufficiently sensitive to spring precipitation deficits.  more » « less
Award ID(s):
1854902
PAR ID:
10476603
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Salt marshes sequester a disproportionately large amount of carbon dioxide (CO2) from the atmosphere through high rates of photosynthesis and carbon burial. Climate change could potentially alter this carbon sink, particularly the response of vegetation to environmental stressors that can decrease photosynthesis. Midday depression of gross primary production (GPP), characterized by a decline in photosynthesis during midday, has been documented in multiple ecosystems as a response to drought, high temperatures, and other stressors linked to climate change. Yet, midday depression has not been thoroughly investigated in salt marsh ecosystems. Here, we show that the midday depression of GPP in aSpartina alterniflorasalt marsh on the Eastern Shore of Virginia was ubiquitous and occurred on 76% of the 283 days studied during the 2019–2022 growing seasons. GPP was estimated from eddy covariance measurements with flux partitioning. Using random forest, we found that the daily maximum tidal height and air temperature were the strongest predictors of midday depression of GPP, with lower high tides and warmer temperatures associated with more severe depression. This result suggests midday depression occurs when GPP decreases in the afternoon in response to salinity and water stress. To our knowledge, this is the first examination of midday depression of photosynthesis inS.alternifloraat the ecosystem scale. Our results highlight the potential of climate change to increase midday depression of photosynthesis and ultimately weaken the salt marsh carbon sink. 
    more » « less
  2. Abstract Theory predicts that rising CO2increases global photosynthesis, a process known as CO2fertilization, and that this is responsible for much of the current terrestrial carbon sink. The estimated magnitude of the historic CO2fertilization, however, differs by an order of magnitude between long-term proxies, remote sensing-based estimates and terrestrial biosphere models. Here we constrain the likely historic effect of CO2on global photosynthesis by combining terrestrial biosphere models, ecological optimality theory, remote sensing approaches and an emergent constraint based on global carbon budget estimates. Our analysis suggests that CO2fertilization increased global annual terrestrial photosynthesis by 13.5 ± 3.5% or 15.9 ± 2.9 PgC (mean ± s.d.) between 1981 and 2020. Our results help resolve conflicting estimates of the historic sensitivity of global terrestrial photosynthesis to CO2and highlight the large impact anthropogenic emissions have had on ecosystems worldwide. 
    more » « less
  3. Abstract We mapped tidal wetland gross primary production (GPP) with unprecedented detail for multiple wetland types across the continental United States (CONUS) at 16‐day intervals for the years 2000–2019. To accomplish this task, we developed the spatially explicit Blue Carbon (BC) model, which combined tidal wetland cover and field‐based eddy covariance tower data into a single Bayesian framework, and used a super computer network and remote sensing imagery (Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index). We found a strong fit between the BC model and eddy covariance data from 10 different towers (r2= 0.83,p< 0.001, root‐mean‐square error = 1.22 g C/m2/day, average error was 7% with a mean bias of nearly zero). When compared with NASA's MOD17 GPP product, which uses a generalized terrestrial algorithm, the BC model reduced error by approximately half (MOD17 hadr2= 0.45,p< 0.001, root‐mean‐square error of 3.38 g C/m2/day, average error of 15%). The BC model also included mixed pixels in areas not covered by MOD17, which comprised approximately 16.8% of CONUS tidal wetland GPP. Results showed that across CONUS between 2000 and 2019, the average daily GPP per m2was 4.32 ± 2.45 g C/m2/day. The total annual GPP for the CONUS was 39.65 ± 0.89 Tg C/year. GPP for the Gulf Coast was nearly double that of the Atlantic and Pacific Coasts combined. Louisiana alone accounted for 15.78 ± 0.75 Tg C/year, with its Atchafalaya/Vermillion Bay basin at 4.72 ± 0.14 Tg C/year. The BC model provides a robust platform for integrating data from disparate sources and exploring regional trends in GPP across tidal wetlands. 
    more » « less
  4. Abstract Photosynthesis of terrestrial ecosystems in the Arctic-Boreal region is a critical part of the global carbon cycle. Solar-induced chlorophyll Fluorescence (SIF), a promising proxy for photosynthesis with physiological insight, has been used to track gross primary production (GPP) at regional scales. Recent studies have constructed empirical relationships between SIF and eddy covariance-derived GPP as a first step to predicting global GPP. However, high latitudes pose two specific challenges: (a) Unique plant species and land cover types in the Arctic–Boreal region are not included in the generalized SIF-GPP relationship from lower latitudes, and (b) the complex terrain and sub-pixel land cover further complicate the interpretation of the SIF-GPP relationship. In this study, we focused on the Arctic-Boreal vulnerability experiment (ABoVE) domain and evaluated the empirical relationships between SIF for high latitudes from the TROPOspheric Monitoring Instrument (TROPOMI) and a state-of-the-art machine learning GPP product (FluxCom). For the first time, we report the regression slope, linear correlation coefficient, and the goodness of the fit of SIF-GPP relationships for Arctic-Boreal land cover types with extensive spatial coverage. We found several potential issues specific to the Arctic-Boreal region that should be considered: (a) unrealistically high FluxCom GPP due to the presence of snow and water at the subpixel scale; (b) changing biomass distribution and SIF-GPP relationship along elevational gradients, and (c) limited perspective and misrepresentation of heterogeneous land cover across spatial resolutions. Taken together, our results will help improve the estimation of GPP using SIF in terrestrial biosphere models and cope with model-data uncertainties in the Arctic-Boreal region. 
    more » « less
  5. Abstract Temperature and water stress are important factors limiting the gross primary productivity (GPP) in terrestrial ecosystems, yet the extent of their influence across ecosystems remains uncertain. This study examines how surface air temperature, soil water availability (SWA) and vapor pressure deficit (VPD) influence ecosystem light use efficiency (LUE), a critical metric for assessing GPP, across different ecosystems and climatic zones at 80 flux tower sites based on in situ measurements and data assimilation products. Results indicate that LUE increases with temperature in spring, with higher correlation coefficients in colder regions (0.79–0.82) than in warmer regions (0.68–0.78). LUE reaches a plateau earlier in the season in warmer regions. LUE variations in summer are mainly driven by SWA, exhibiting a positive correlation indicative of a water‐limited regime. The relationship between the daily LUE and daytime temperature shows a clear seasonal hysteresis at many sites, with a higher LUE in spring than in fall under the same temperature, likely resulting from younger leaves being more efficient in photosynthesis. Drought stress influences LUE through SWA in all ranges of water availability; VPD variation under moderate conditions does not have a clear influence on LUE, but extremely high VPD (exceeding the threshold of 1.6 kPa, often observed during extreme drought‐heat events) causes a dramatic reduction of LUE. Our findings provide insight into how ecosystem productivities respond to climate variability and how they may change under the influence of more frequent and severe heat and drought events projected for the future. 
    more » « less