Abstract. The Geoengineering Model Intercomparison Project (GeoMIP) is a coordinating framework, started in 2010, that includes a series of standardized climate model experiments aimed at understanding the physical processes and projected impacts of solar geoengineering. Numerous experiments have been conducted, and numerous more have been proposed as “test-bed” experiments, spanning a variety of geoengineering techniques aimed at modifying the planetary radiation budget: stratospheric aerosol injection, marine cloud brightening, surface albedo modification, cirrus cloud thinning, and sunshade mirrors. To date, more than 100 studies have been published that used results from GeoMIP simulations. Here we provide a critical assessment of GeoMIP and its experiments. We discuss its successes and missed opportunities, for instance in terms of which experiments elicited more interest from the scientific community and which did not, and the potential reasons why that happened. We also discuss the knowledge that GeoMIP has contributed to the field of geoengineering research and climate science as a whole: what have we learned in terms of intermodel differences, robustness of the projected outcomes for specific geoengineering methods, and future areas of model development that would be necessary in the future? We also offer multiple examples of cases where GeoMIP experiments were fundamental for international assessments of climate change. Finally, we provide a series of recommendations, regarding both future experiments and more general activities, with the goal of continuously deepening our understanding of the effects of potential geoengineering approaches and reducing uncertainties in climate outcomes, important for assessing wider impacts on societies and ecosystems. In doing so, we refine the purpose of GeoMIP and outline a series of criteria whereby GeoMIP can best serve its participants, stakeholders, and the broader science community.
more »
« less
G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies
Abstract. The Geoengineering Model Intercomparison Project (GeoMIP) has proposed multiple model experiments during phases 5 and 6 of the Climate Model Intercomparison Project (CMIP), with the latest set of model experiments proposed in 2015. With phase 7 of CMIP in preparation and with multiple efforts ongoing to better explore the potential space of outcomes for different solar radiation modifications (SRMs) both in terms of deployment strategies and scenarios and in terms of potential impacts, the GeoMIP community has identified the need to propose and conduct a new experiment that could serve as a bridge between past iterations and future CMIP7 experiments. Here we report the details of such a proposed experiment, named G6-1.5K-SAI, to be conducted with the current generation of scenarios and models from CMIP6 and clarify the reasoning behind many of the new choices introduced. Namely, compared to the CMIP6 GeoMIP scenario G6sulfur, we decided on (1) an intermediate emission scenario as a baseline (the Shared Socioeconomic Pathway 2-4.5), (2) a start date set in the future that includes both considerations for the likelihood of exceeding 1.5 °C above preindustrial levels and some considerations for a likely start date for an SRM implementation, and (3) a deployment strategy for stratospheric aerosol injection that does not inject in the tropical pipe in order to obtain a more latitudinally uniform aerosol distribution. We also offer more details regarding the preferred experiment length and number of ensemble members and include potential options for second-tier experiments that some modeling groups might want to run. The specifics of the proposed experiment will further allow for a more direct comparison between results obtained from CMIP6 models and those obtained from future scenarios for CMIP7.
more »
« less
- PAR ID:
- 10512313
- Publisher / Repository:
- European Geosciences Union
- Date Published:
- Journal Name:
- Geoscientific Model Development
- Volume:
- 17
- Issue:
- 7
- ISSN:
- 1991-9603
- Page Range / eLocation ID:
- 2583 to 2596
- Subject(s) / Keyword(s):
- Climate intervention Geoengineering GeoMIP
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiments G6sulfur and G6solar for six Earth system models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming that results from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that over the final two decades of this century there are considerable inter-model spreads in the needed injection amounts of sulfate (29 ± 9 Tg-SO2/yr between 2081 and 2100), in the latitudinal distribution of the aerosol cloud and in the stratospheric temperature changes resulting from the added aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91 ± 0.44 %). The analyzed models already show significant differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05 K ± 0.42 K and 2.28 ± 0.80 %, respectively, for SSP5-8.5 minus SSP2-4.5 averaged over 2081–2100). With aerosol injection, the differences in how the aerosols spread further change some of the underlying uncertainties, such as the global mean precipitation response (−3.79 ± 0.76 % for G6sulfur compared to −2.07 ± 0.40 % for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the behavior of the aerosols also result in a larger uncertainty in the regional surface temperature response among models in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modeled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system. However, all models agree that compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures.more » « less
-
Abstract Climate change has been projected to increase the intensity and magnitude of extreme temperature in Indonesia. Solar radiation management (SRM) has been proposed as a strategy to temporarily combat global warming, buying time for negative emissions. Although the global impacts of SRM have been extensively studied in recent years, regional impacts, especially in the tropics, have received much less attention. This article investigates the potential stratospheric sulphate aerosol injection (SAI) to modify mean and extreme temperature, as well as the relative humidity and wet bulb temperature (WBT) change over Indonesian Maritime Continent (IMC) based on simulations from three different earth system models. We applied a simple downscaling method and corrected the bias of model output to reproduce historical temperatures and relative humidity over IMC. We evaluated changes in geoengineering model intercomparison project (GeoMIP) experiment G4, an SAI experiment in 5 Tg of SO2into the equatorial lower stratosphere between 2020 and 2069, concurrent with the RCP4.5 emissions scenario. G4 is able to significantly reduce the temperature means and extremes, and although differences in magnitude of response and spatial pattern occur, there is a generally consistent response. The spatial response of changes forced by RCP4.5 scenario and G4 are notably heterogeneous in the archipelago, highlighting uncertainties that would be critical in assessing socio‐economic consequences of both doing, and not doing G4. In general, SAI has bigger impacts in reducing temperatures over land than oceans, and the southern monsoon region shows more variability. G4 is also effective at reducing the likelihood of WBT > 27°C events compared with RCP4.5 after some years of SAI deployment as well as during the post‐termination period of SAI. Regional downscaling may be an effective tool in obtaining policy‐relevant information about local effects of different future scenarios involving SAI.more » « less
-
Biomass burning can affect climate via the emission of aerosols and their subsequent impact on radiation, cloud microphysics, and surface and atmospheric albedo. Biomass burning emissions (BBEs) over the boreal region have strongly increased during the last decade and are expected to continue increasing as the climate warms. Climate models simulate aerosol processes, yet historical and future Coupled Model Intercomparison Project (CMIP) simulations have no active fire component, and BBEs are prescribed as external forcings. Here, we show that CMIP6 used future boreal BBEs scenarios with unrealistic near-zero trends that have a large impact on climate trends. By running sensitivity experiments with ramped up boreal emissions based on observed trends, we find that increasing boreal BBEs reduces global warming by 12% and Arctic warming by 38%, reducing the loss of sea ice. Tropical precipitation shifts southward as a result of the hemispheric difference in boreal aerosol forcing and subsequent temperature response. These changes stem from the impact of aerosols on clouds, increasing cloud droplet number concentration, cloud optical depth, and low cloud cover, ultimately reducing surface shortwave flux over northern latitudes. Our results highlight the importance of realistic boreal BBEs in climate model simulations and the need for improved understanding of boreal emission trends and aerosol–climate interactions.more » « less
-
The Geoengineering Model Intercomparison Project (GeoMIP) held its 14th annual workshop, with almost 70 in-person participants and 15 remote participants for a robust discussion about future experiments and community needs in light of phase 7 of the Coupled Model Intercomparison Project (CMIP7).more » « less
An official website of the United States government

