skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Applications of artificial intelligence technologies in water environments: From basic techniques to novel tiny machine learning systems
Artificial intelligence (AI) and machine learning (ML) are novel techniques to detect hidden patterns in environmental data. Despite their capabilities, these novel technologies have not been seriously used for real-world problems, such as real-time environmental monitoring. This survey established a framework to advance the novel applications of AI and ML techniques such as Tiny Machine Learning (TinyML) in water environments. The survey covered deep learning models and their advantages over classical ML models. The deep learning algorithms are the heart of TinyML models and are of paramount importance for practical uses in water environments. This survey highlighted the capabilities and discussed the possible applications of the TinyML models in water environments. This study indicated that the TinyML models on microcontrollers are useful for a number of cutting-edge problems in water environments, especially for monitoring purposes. The TinyML models on microcontrollers allow for in situ real-time environmental monitoring without transferring data to the cloud. It is concluded that monitoring systems based on TinyML models offer cheap tools to autonomously track pollutants in water and can replace traditional monitoring methods.  more » « less
Award ID(s):
2300369
PAR ID:
10512347
Author(s) / Creator(s):
; ; ;
Editor(s):
Chen, Guohua; Khan, Faisal
Publisher / Repository:
Elservier
Date Published:
Journal Name:
Process Safety and Environmental Protection
Volume:
180
ISSN:
0957-5820
Page Range / eLocation ID:
10 to 22
Subject(s) / Keyword(s):
Artificial intelligence Deep learning TinyML Microcontrollers Monitoring
Format(s):
Medium: X Size: 1MB Other: pdf
Size(s):
1MB
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent times, AI and deep learning have witnessed explosive growth in almost every subject involving data. Complex data analyses problems that took prolonged periods, or required laborious manual effort, are now being tackled through AI and deep-learning techniques with unprecedented accuracy. Machine learning (ML) using Convolutional Neural Networks (CNNs) has shown great promise for such applications. However, traditional CPU-based sequential computing no longer can meet the requirements of mission-critical applications which are compute-intensive and require low latency. Heterogeneous computing (HGC), with CPUs integrated with accelerators such as GPUs and FPGAs, offers unique capabilities to accelerate CNNs. In this presentation, we will focus on using FPGA-based reconfigurable computing to accelerate various aspects of CNN. We will begin with the current state of the art in using FPGAs for CNN acceleration, followed by the related R&D activities (outlined below) in the SHREC* Center at the University of Florida, based on which we will discuss the opportunities in heterogeneous computing for machine learning. 
    more » « less
  2. Decision-focused learning (DFL) is an emerging paradigm that integrates machine learning (ML) and constrained optimization to enhance decision quality by training ML models in an end-to-end system. This approach shows significant potential to revolutionize combinatorial decision-making in real-world applications that operate under uncertainty, where estimating unknown parameters within decision models is a major challenge. This paper presents a comprehensive review of DFL, providing an in-depth analysis of both gradient-based and gradient-free techniques used to combine ML and constrained optimization. It evaluates the strengths and limitations of these techniques and includes an extensive empirical evaluation of eleven methods across seven problems. The survey also offers insights into recent advancements and future research directions in DFL. 
    more » « less
  3. Abstract Prediction of dynamic environmental variables in unmonitored sites remains a long-standing challenge for water resources science. The majority of the world’s freshwater resources have inadequate monitoring of critical environmental variables needed for management. Yet, the need to have widespread predictions of hydrological variables such as river flow and water quality has become increasingly urgent due to climate and land use change over the past decades, and their associated impacts on water resources. Modern machine learning methods increasingly outperform their process-based and empirical model counterparts for hydrologic time series prediction with their ability to extract information from large, diverse data sets. We review relevant state-of-the art applications of machine learning for streamflow, water quality, and other water resources prediction and discuss opportunities to improve the use of machine learning with emerging methods for incorporating watershed characteristics and process knowledge into classical, deep learning, and transfer learning methodologies. The analysis here suggests most prior efforts have been focused on deep learning frameworks built on many sites for predictions at daily time scales in the United States, but that comparisons between different classes of machine learning methods are few and inadequate. We identify several open questions for time series predictions in unmonitored sites that include incorporating dynamic inputs and site characteristics, mechanistic understanding and spatial context, and explainable AI techniques in modern machine learning frameworks. 
    more » « less
  4. Audio-based human activity recognition (HAR) is very popular because many human activities have unique sound signatures that can be detected using machine learning (ML) approaches. These audio-based ML HAR pipelines often use common featurization techniques, such as extracting various statistical and spectral features by converting time domain signals to the frequency domain (using an FFT) and using them to train ML models. Some of these approaches also claim privacy benefits by preventing the identification of human speech. However, recent deep learning-based automatic speech recognition (ASR) models pose new privacy challenges to these featurization techniques. In this paper, we systematically evaluate various featurization approaches for audio data, assessing their privacy risks through metrics like speech intelligibility (PER and WER) while considering the utility tradeoff in terms of ML-based activity recognition accuracy. Our findings reveal the susceptibility of these approaches to speech content recovery when exposed to recent ASR models, especially under re-tuning or retraining conditions. Notably, fine-tuned ASR models achieved an average Phoneme Error Rate (PER) of 39.99% and Word Error Rate (WER) of 44.43% in speech recognition for these approaches. To overcome these privacy concerns, we propose Kirigami, a lightweight machine learning-based audio speech filter that removes human speech segments reducing the efficacy of ASR models (70.48% PER and 101.40% WER) while also maintaining HAR accuracy (76.0% accuracy). We show that Kirigami can be implemented on common edge microcontrollers with limited computational capabilities and memory, providing a path to deployment on a variety of IoT devices. Finally, we conducted a real-world user study and showed the robustness of Kirigami on a laptop and an ARM Cortex-M4F microcontroller under three different background noises. 
    more » « less
  5. Tiny machine learning (TinyML) is an essential component of emerging smart microcontrollers (MCUs). However, the protection of the intellectual property (IP) of the model is an increasing concern due to the lack of desktop/server-grade resources on these power-constrained devices. In this paper, we propose STML, a system and algorithm co-design to Secure IP of TinyML on MCUs with ARM TrustZone. Our design jointly optimizes memory utilization and latency while ensuring the security and accuracy of emerging models. We implemented a prototype and benchmarked with 7 models, demonstrating STML reduces 40% of model protection runtime overhead on average. 
    more » « less