skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sparks of symmetric matrices and their graphs
The spark of a matrix is the smallest number of nonzero coordinates of any nonzero null vector. For real symmetric matrices, the sparsity of null vectors is shown to be associated with the structure of the graph obtained from the off-diagonal pattern of zero and nonzero entries. The smallest possible spark of a matrix corresponding to a graph is defined as the spark of the graph. Connections are established between graph spark and well-known concepts including minimum rank, forts, orthogonal representations, Parter and Fiedler vertices, and vertex connectivity.  more » « less
Award ID(s):
2331072
PAR ID:
10512386
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
International Linear Algebra Society
Date Published:
Journal Name:
The Electronic Journal of Linear Algebra
Volume:
39
ISSN:
1081-3810
Page Range / eLocation ID:
591 to 606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The spread of a graph $$G$$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $$G$$. Gotshall, O'Brien and Tait conjectured that for sufficiently large $$n$$, the $$n$$-vertex outerplanar graph with maximum spread is the graph obtained by joining a vertex to a path on $n-1$ vertices. In this paper, we disprove this conjecture by showing that the extremal graph is the graph obtained by joining a vertex to a path on $$\lceil(2n-1)/3\rceil$$ vertices and $$\lfloor(n-2)/3\rfloor$$ isolated vertices. For planar graphs, we show that the extremal $$n$$-vertex planar graph attaining the maximum spread is the graph obtained by joining two nonadjacent vertices to a path on $$\lceil(2n-2)/3\rceil$$ vertices and $$\lfloor(n-4)/3\rfloor$$ isolated vertices. 
    more » « less
  2. We take a random matrix theory approach to random sketching and show an asymptotic first-order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization and extend previous results on an asymptotic equivalence of random matrices to the real setting, providing a precise characterization of the equivalence even under negative regularization, including a precise characterization of the smallest nonzero eigenvalue of the sketched matrix. We then further characterize the second-order equivalence of the sketched pseudoinverse. We also apply our results to the analysis of the sketch-and-project method and to sketched ridge regression. Last, we prove that these results generalize to asymptotically free sketching matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our results to several common sketches used in practice. 
    more » « less
  3. The spread of a graph $$G$$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $$G$$. In this paper, we consider the family of graphs which contain no $$K_{s,t}$$-minor. We show that for any $$t\geq s \geq  2$$ and sufficiently large $$n$$, there is an integer $$\xi_{t}$$ such that the extremal $$n$$-vertex $$K_{s,t}$$-minor-free graph attaining the maximum spread is the graph obtained by joining a graph $$L$$ on $(s-1)$ vertices to the disjoint union of $$\lfloor \frac{2n+\xi_{t}}{3t}\rfloor$$ copies of $$K_t$$ and $$n-s+1 - t\lfloor \frac{2n+\xi_t}{3t}\rfloor$$ isolated vertices. Furthermore, we give an explicit formula for $$\xi_{t}$$ and an explicit description for the graph $$L$$ for $$t \geq \frac32(s-3) +\frac{4}{s-1}$$. 
    more » « less
  4. Abstract We study the volume growth of metric balls as a function of the radius in discrete spaces and focus on the relationship between volume growth and discrete curvature. We improve volume growth bounds under a lower bound on the so-called Ollivier curvature and discuss similar results under other types of discrete Ricci curvature. Following recent work in the continuous setting of Riemannian manifolds (by the 1st author), we then bound the eigenvalues of the Laplacian of a graph under bounds on the volume growth. In particular, $$\lambda _2$$ of the graph can be bounded using a weighted discrete Hardy inequality and the higher eigenvalues of the graph can be bounded by the eigenvalues of a tridiagonal matrix times a multiplicative factor, both of which only depend on the volume growth of the graph. As a direct application, we relate the eigenvalues to the Cheeger isoperimetric constant. Using these methods, we describe classes of graphs for which the Cheeger inequality is tight on the 2nd eigenvalue (i.e. the 1st nonzero eigenvalue). We also describe a method for proving Buser’s Inequality in graphs, particularly under a lower bound assumption on curvature. 
    more » « less
  5. We study the problem of finding the smallest graph that does not occur as an induced subgraph of a given graph. This missing induced subgraph has at most logarithmic size and can be found by a brute-force search, in an $$n$$-vertex graph, in time $$n^{O(\log n)}$$. We show that under the Exponential Time Hypothesis this quasipolynomial time bound is optimal. We also consider variations of the problem in which either the missing subgraph or the given graph comes from a restricted graph family; for instance, we prove that the smallest missing planar induced subgraph of a given planar graph can be found in polynomial time. 
    more » « less