Synthesis of Ultrawide Band Gap TeO 2 Nanoparticles by Pulsed Laser Ablation in Liquids: Top Ablation versus Bottom Ablation
- Award ID(s):
- 2228891
- PAR ID:
- 10512451
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Omega
- Volume:
- 9
- Issue:
- 24
- ISSN:
- 2470-1343
- Format(s):
- Medium: X Size: p. 25832-25840
- Size(s):
- p. 25832-25840
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this paper, we formulate a geometric nonlinear theory of the mechanics of accreting–ablating bodies. This is a generalization of the theory of accretion mechanics of Sozio & Yavari (Sozio & Yavari 2019J. Nonlinear Sci.29, 1813–1863 (doi:10.1007/s00332-019-09531-w)). More specifically, we are interested in large deformation analysis of bodies that undergo a continuous and simultaneous accretion and ablation on their boundaries while under external loads. In this formulation, the natural configuration of an accreting–ablating body is a time-dependent Riemannian -manifold with a metric that is an unknowna prioriand is determined after solving the accretion–ablation initial-boundary-value problem. In addition to the time of attachment map, we introduce a time of detachment map that along with the time of attachment map, and the accretion and ablation velocities, describes the time-dependent reference configuration of the body. The kinematics, material manifold, material metric, constitutive equations and the balance laws are discussed in detail. As a concrete example and application of the geometric theory, we analyse a thick hollow circular cylinder made of an arbitrary incompressible isotropic material that is under a finite time-dependent extension while undergoing continuous ablation on its inner cylinder boundary and accretion on its outer cylinder boundary. The state of deformation and stress during the accretion–ablation process, and the residual stretch and stress after the completion of the accretion–ablation process, are computed. This article is part of the theme issue ‘Foundational issues, analysis and geometry in continuum mechanics’.more » « less
-
null (Ed.)Laser ablation electrospray ionization (LAESI) driven by mid-infrared laser pulses allows the direct analysis of biological tissues with minimal sample preparation. Dedicated remote ablation chambers have been developed to eliminate the need for close proximity between the sample and the mass spectrometer inlet. This also allows for the analysis of large or irregularly shaped objects, and incorporation of additional optics for microscopic imaging. Here we report on the characterization of a newly designed conical inner volume ablation chamber working in transmission geometry, where a reduced zone of stagnation was achieved by tapering the sample platform and the chamber outlet. As a result, the transmission efficiency of both large (>7.5 μm) and smaller particulates (<6.5 μm) has increased significantly. Improved analytical figures of merit, including 300 fmol limit of detection, and three orders of magnitude in dynamic range, were established. Particle residence time, measured by the FWHM of the analyte signal, was reduced from 2.0 s to 0.5 s enabling higher ablation rates and shorter analysis time. A total of six glucosinolates (sinigrin, gluconapin, progoitrin, glucoiberin, glucoraphanin, and glucohirsutin) were detected in plant samples with ion abundances higher by a factor of 2 to 8 for the redesigned ablation chamber.more » « less
An official website of the United States government
