skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: On asymptotic dark energy in string theory
A<sc>bstract</sc>

We examine bounds on accelerated expansion in asymptotic regions of the moduli space in string theory compactifications to four spacetime dimensions. While there are conjectures that forbid or constrain accelerated expansion in such asymptotic regions, potential counter examples have been discussed recently in the literature. We check whether such counter examples can arise in explicit string theory constructions, focusing in particular on non-geometric compactifications of type IIB string theory that have no Kähler moduli. We find no violation of the Strong Asymptotic dS Conjecture and thus provide support for the absence of accelerated expansion in asymptotic regions of a barely explored corner of the string landscape. Moreover, working in a simplified setting, we point out a new mechanism for potentially connecting the Sharpened Distance Conjecture and the Strong Asymptotic dS Conjecture. If this argument could be generalized, it would mean that the Sharpened Distance Conjecture is implied by the Strong Asymptotic dS Conjecture, and that their exponential factors are naturally related by a factor of 2.

 
more » « less
Award ID(s):
2210271 2013988
PAR ID:
10512577
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
9
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract The Distance Conjecture holds that any infinite-distance limit in the scalar field moduli space of a consistent theory of quantum gravity must be accompanied by a tower of light particles whose masses scale exponentially with proper field distance ‖ ϕ ‖ as m ~ exp(− λ ‖ ϕ ‖), where λ is order-one in Planck units. While the evidence for this conjecture is formidable, there is at present no consensus on which values of λ are allowed. In this paper, we propose a sharp lower bound for the lightest tower in a given infinite-distance limit in d dimensions: λ ≥ $$ 1/\sqrt{d-2} $$ 1 / d − 2 . In support of this proposal, we show that (1) it is exactly preserved under dimensional reduction, (2) it is saturated in many examples of string/M-theory compactifications, including maximal supergravity in d = 4 – 10 dimensions, and (3) it is saturated in many examples of minimal supergravity in d = 4 – 10 dimensions, assuming appropriate versions of the Weak Gravity Conjecture. We argue that towers with λ < $$ 1/\sqrt{d-2} $$ 1 / d − 2 discussed previously in the literature are always accompanied by even lighter towers with λ ≥ $$ 1/\sqrt{d-2} $$ 1 / d − 2 , thereby satisfying our proposed bound. We discuss connections with and implications for the Emergent String Conjecture, the Scalar Weak Gravity Conjecture, the Repulsive Force Conjecture, large-field inflation, and scalar field potentials in quantum gravity. In particular, we argue that if our proposed bound applies beyond massless moduli spaces to scalar fields with potentials, then accelerated cosmological expansion cannot occur in asymptotic regimes of scalar field space in quantum gravity. 
    more » « less
  2. We study towers of light particles that appear in infinite-distance limits of moduli spaces of 9-dimensional 𝒩=1 string theories, some of which notably feature decompactification limits with running string coupling. The lightest tower in such decompactification limits consists of the non-BPS Kaluza-Klein modes of Type I′ string theory, whose masses depend nontrivially on the moduli of the theory. We work out the moduli-dependence by explicit computation, finding that despite the running decompactification the Distance Conjecture remains satisfied with an exponential decay rate ⍺ ≥ 1/√(d-2) in accordance with the sharpened Distance Conjecture. The related sharpened Convex Hull Scalar Weak Gravity Conjecture also passes stringent tests. Our results non-trivially test the Emergent String Conjecture, while highlighting the important subtlety that decompactifcation can lead to a running solution rather than to a higher-dimensional vacuum. 
    more » « less
  3. A<sc>bstract</sc>

    In this work we study interesting corners of the quantum gravity landscape with 8 supercharges pushing the boundaries of our current understanding. Calabi-Yau threefolds compactifications of F/M/type II theories to 6, 5 and 4 dimensions are the most prominent examples of this class, and these always lead to a universal hypermultiplet coming from the volume/string coupling constant. We find new examples of asymmetric orbifold constructions which have no hypermultiplets in 4 or 5 dimensions and no neutral hypers in 6d. We argue that these theories can also be obtained by going to strong coupling/small volume regions of geometric constructions where a new Coulomb branch opens up and moving in this direction freezes the volume/string coupling constant. Interestingly we find that the Kodaira condition encountered in geometric limits of F-theory compactifications to 6 dimensions is violated in these corners of the landscape due to strong quantum corrections. We also construct a theory in 3 dimensions which if it were to arise by toroidal compactifications from 5d, it would have to come from pure$$ \mathcal{N} $$N= 1 supergravity with no massless scalar fields.

     
    more » « less
  4. A<sc>bstract</sc>

    We present an efficient algorithm for computing the prepotential in compactifications of type II string theory on mirror pairs of Calabi-Yau threefolds in toric varieties. Applying this method, we exhibit the first systematic computation of genus-zero Gopakumar-Vafa invariants in compact threefolds with many moduli, including examples with up to 491 vector multiplets.

     
    more » « less
  5. In this paper, we propose a new Swampland condition, the Trans-Planckian Censorship Conjecture (TCC), based on the idea that in a consistent quantum theory of gravity sub-Planckian quantum fluctuations should remain quantum and never become larger than the Hubble horizon and freeze in an expanding universe. Applied to the case of scalar fields, it leads to conditions that are similar to the refined dS Swampland conjecture. For large field ranges, TCC is stronger than the dS Swampland conjecture but it is weaker for small field ranges. In particular for asymptotic regions of field space, TCC leads to a bound |V′|≥2(d−1)(d−2)√V, which is consistent with all known cases in string theory. Like the dS Swampland conjecture, the TCC forbids long-lived meta-stable dS spaces, but it does allow sufficiently short-lived ones. 
    more » « less