skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ThermoVR: A Virtual Laboratory to Enhance Learning in Undergraduate Thermodynamics
An interactive Virtual Reality (VR) based simulator is being used as part of a virtual laboratory activity with undergraduates in mechanical engineering to help them learn key thermodynamics principles. This virtual laboratory is designed to enhance the success rate of students grappling with the challenging array of thermodynamic property relationships. At the core of this laboratory is a simulation of the IAPWS-95 and IAPWS-97 equation of state. The simulator visualizes these phenomena using the ubiquitous example of a piston-cylinder system as well as a 3D plot. This design affords input in terms of relatable processes such as adding a heater or a weight to a system and visualizes the results of the various processes (isothermal, isentropic, etc.) in terms of observable changes to the piston-cylinder system as well as movement of the state within a 3D plot. Constant property lines, such as isotherms, isentropes, or isenthalps allow students to also survey the minimal or dramatic changes in any of the properties during such a process. This report presents features of the fully operating virtual labratory and presents observations from its initial use with students in their undergraduate introductory thermodynamics course.m  more » « less
Award ID(s):
2142103
PAR ID:
10512599
Author(s) / Creator(s):
;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Virtual Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    When developing a project, input from stakeholders is a key to success. In this paper, a Virtual Gemba Walk dashboard for virtual capstone projects is proposed. A Virtual Gemba Walk aligns the expectations of the three stakeholders: student, teacher and industry sponsor through a real-time analytics dashboard that visualizes project indicators, tracks progress and identifies misaligned expectations. This poster presents a proposed interactive dashboard, that leverages data from technology to support the Virtual Gemba Walk process. The dashboard contains key indicators of the capstone project, triggers new Gemba Walks and visualizes feedback from each stakeholders’ perspective. The aim is to help students, teachers and industry sponsors to get meaningful feedback for a better chance of project success. 
    more » « less
  2. Students often struggle with visualizing protein structures when working with two-dimensional textbook and lecture materials, so introducing them to 3D visualization software developed by and for structural biologists offers them a unique opportunity to work with authentic data while furthering their spatial reasoning skills and understanding of molecular structure and function. This article presents an active learning virtual laboratory in which students use authentic structural biology data to investigate the effects of both hypothetical and real-world SARS-CoV-2 mutations on the virus’s ability to bind to human ACE2 receptors and infect a host, causing COVID-19. Through this activity, introductory-level college students or advanced high school students gain a better understanding of applied biology, such as how vaccines and treatments are designed, as well as strengthening their understanding of core disciplinary concepts, such as the relationship between protein structure and function and the central dogma of molecular biology. While there were challenges during the pilot phase of activity development due to COVID-19 restrictions, students in the pilot groups came away from the activity with deeper understanding of the relationship between proteins and amino acid sequences and a new appreciation for the ways researchers design treatments for and study viruses. 
    more » « less
  3. This Work-in-progress paper presents the pilot study of implementing a Virtual Reality (VR) environment to teach a junior-level Mechanical Engineering laboratory class at Prairie View A&M University. The target class is the manufacturing processes laboratory, which initially aimed to provide a hands-on experience with various manufacturing equipment. Providing students with systematic training followed by repetitive access to manufacturing equipment is required for longer knowledge retention and safety in laboratories. Yet, complications from the pandemic and other logistical events have negatively affected many universities' laboratory courses. The objective of this study is to examine the potential and effectiveness of the VR framework in engineering education. More specifically, this paper details the project's first phase, which includes the development and deployment of machining VR modules and preliminary outcomes. The VR module in this phase is based on the existing hammer fabrication project that requires the utilization of a milling machine, drill press, lathe, tap, and threading dies. A virtual replica of the machining laboratory was created using C# and the unity 3D game engine and published as an Android Package Kit (APK) for the META platform to be used in Oculus Quest 2 devices. The module is composed of three submodules, each corresponding to different hammer parts. These VR submodules replace traditional verbal and video training and are deployed in two semesters with 46 student participants. The student performance in project reports is compared with a control group for a quantitative assessment. Early conclusions indicate that the students remember the operation procedures and functions of equipment longer and are more confident in operating each manufacturing equipment leading to better quality parts and reports. 
    more » « less
  4. Herein, we describe the implementation of virtual labs that simulate central nervous system functions. The virtual labs use Jupyter Notebooks as a method of distribution. The underlying physiology is implemented using NEURON [8]. Python is used to implement interactive portions of the code without the need to know how to write code. Together, these tools provide a method for engaging students in inquiry-based exploration of neuroscience processes. Additionally, we report that computational tools have potential to engage students and promote inclusion in the research community similarly to students who have a traditional laboratory experience. 
    more » « less
  5. This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students. 
    more » « less