skip to main content


Title: This Looks Like That There: Interpretable Neural Networks for Image Tasks When Location Matters
Abstract

We develop and demonstrate a new interpretable deep learning model specifically designed for image analysis in Earth system science applications. The neural network is designed to be inherently interpretable, rather than explained via post hoc methods. This is achieved by training the network to identify parts of training images that act as prototypes for correctly classifying unseen images. The new network architecture extends the interpretable prototype architecture of a previous study in computer science to incorporate absolute location. This is useful for Earth system science where images are typically the result of physics-based processes, and the information is often geolocated. Although the network is constrained to only learn via similarities to a small number of learned prototypes, it can be trained to exhibit only a minimal reduction in accuracy relative to noninterpretable architectures. We apply the new model to two Earth science use cases: a synthetic dataset that loosely represents atmospheric high and low pressure systems, and atmospheric reanalysis fields to identify the state of tropical convective activity associated with the Madden–Julian oscillation. In both cases, we demonstrate that considering absolute location greatly improves testing accuracies when compared with a location-agnostic method. Furthermore, the network architecture identifies specific historical dates that capture multivariate, prototypical behavior of tropical climate variability.

Significance Statement

Machine learning models are incredibly powerful predictors but are often opaque “black boxes.” The how-and-why the model makes its predictions is inscrutable—the model is not interpretable. We introduce a new machine learning model specifically designed for image analysis in Earth system science applications. The model is designed to be inherently interpretable and extends previous work in computer science to incorporate location information. This is important because images in Earth system science are typically the result of physics-based processes, and the information is often map based. We demonstrate its use for two Earth science use cases and show that the interpretable network exhibits only a small reduction in accuracy relative to black-box models.

 
more » « less
Award ID(s):
2019758
NSF-PAR ID:
10512612
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AMS Journals
Date Published:
Journal Name:
Artificial Intelligence for the Earth Systems
Volume:
1
Issue:
3
ISSN:
2769-7525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent deep-learning models have achieved impressive prediction performance, but often sacrifice interpretability and computational efficiency. Interpretability is crucial in many disciplines, such as science and medicine, where models must be carefully vetted or where interpretation is the goal itself. Moreover, interpretable models are concise and often yield computational efficiency. Here, we propose adaptive wavelet distillation (AWD), a method which aims to distill information from a trained neural network into a wavelet transform. Specifically, AWD penalizes feature attributions of a neural network in the wavelet domain to learn an effective multi-resolution wavelet transform. The resulting model is highly predictive, concise, computationally efficient, and has properties (such as a multi-scale structure) which make it easy to interpret. In close collaboration with domain experts, we showcase how AWD addresses challenges in two real-world settings: cosmological parameter inference and molecular-partner prediction. In both cases, AWD yields a scientifically interpretable and concise model which gives predictive performance better than state-of-the-art neural networks. Moreover, AWD identifies predictive features that are scientifically meaningful in the context of respective domains. All code and models are released in a full-fledged package available on Github. 
    more » « less
  2. The NASA Planetary Data System (PDS) hosts millions of images of planets, moons, and other bodies collected throughout many missions. The ever-expanding nature of data and user engagement demands an interpretable content classification system to support scientific discovery and individual curiosity. In this paper, we leverage a prototype-based architecture to enable users to understand and validate the evidence used by a classifier trained on images from the Mars Science Laboratory (MSL) Curiosity rover mission. In addition to providing explanations, we investigate the diversity and correctness of evidence used by the content-based classifier. The work presented in this paper will be deployed on the PDS Image Atlas, replacing its non-interpretable counterpart.

     
    more » « less
  3. Abstract

    Entropy and Information are key concepts not only in Information Theory but also in Physics: historically in the fields of Thermodynamics, Statistical and Analytical Mechanics, and, more recently, in the field of Information Physics. In this paper we argue that Information Physics reconciles and generalizes statistical, geometric, and mechanistic views on information. We start by demonstrating how the use and interpretation of Entropy and Information coincide in Information Theory, Statistical Thermodynamics, and Analytical Mechanics, and how this can be taken advantage of when addressing Earth Science problems in general and hydrological problems in particular. In the second part we discuss how Information Physics provides ways to quantify Information and Entropy from fundamental physical principles. This extends their use to cases where the preconditions to calculate Entropy in the classical manner as an aggregate statistical measure are not met. Indeed, these preconditions are rarely met in the Earth Sciences due either to limited observations or the far‐from‐equilibrium nature of evolving systems. Information Physics therefore offers new opportunities for improving the treatment of Earth Science problems.

     
    more » « less
  4. Concept Bottleneck Models (CBM) are inherently interpretable models that factor model decisions into human-readable concepts. They allow people to easily understand why a model is failing, a critical feature for high-stakes applications. CBMs require manually specified concepts and often under-perform their black box counterparts, preventing their broad adoption. We address these shortcomings and are first to show how to construct high-performance CBMs without manual specification of similar accuracy to black box models. Our approach, Language Guided Bottlenecks (LaBo), leverages a language model, GPT-3, to define a large space of possible bottlenecks. Given a problem domain, LaBo uses GPT-3 to produce factual sentences about categories to form candidate concepts. LaBo efficiently searches possible bottlenecks through a novel submodular utility that promotes the selection of discriminative and diverse information. Ultimately, GPT-3's sentential concepts can be aligned to images using CLIP, to form a bottleneck layer. Experiments demonstrate that LaBo is a highly effective prior for concepts important to visual recognition. In the evaluation with 11 diverse datasets, LaBo bottlenecks excel at few-shot classification: they are 11.7% more accurate than black box linear probes at 1 shot and comparable with more data. Overall, LaBo demonstrates that inherently interpretable models can be widely applied at similar, or better, performance than black box approaches. 
    more » « less
  5. The El Nino Southern Oscillation (ENSO) is a semi-periodic fluctuation in sea surface temperature (SST) over the tropical central and eastern Pacific Ocean that influences interannual variability in regional hydrology across the world through long-range dependence or teleconnections. Recent research has demonstrated the value of Deep Learning (DL) methods for improving ENSO prediction as well as Complex Networks (CN) for understanding teleconnections. However, gaps in predictive understanding of ENSO-driven river flows include the black box nature of DL, the use of simple ENSO indices to describe a complex phenomenon and translating DL-based ENSO predictions to river flow predictions. Here we show that eXplainable DL (XDL) methods, based on saliency maps, can extract interpretable predictive information contained in global SST and discover novel SST information regions and dependence structures relevant for river flows which, in tandem with climate network constructions, enable improved predictive understanding. Our results reveal additional information content in global SST beyond ENSO indices, develop new understanding of how SSTs influence river flows, and generate improved river flow predictions with uncertainties. Observations, reanalysis data, and earth system model simulations are used to demonstrate the value of the XDL-CN based methods for future interannual and decadal scale climate projections. 
    more » « less