Quantum computing (QC) has opened the door to advancements in machine learning (ML) tasks that are currently implemented in the classical domain. Convolutional neural networks (CNNs) are classical ML architectures that exploit data locality and possess a simpler structure than a fully connected multi-layer perceptrons (MLPs) without compromising the accuracy of classification. However, the concept of preserving data locality is usually overlooked in the existing quantum counterparts of CNNs, particularly for extracting multifeatures in multidimensional data. In this paper, we present an multidimensional quantum convolutional classifier (MQCC) that performs multidimensional and multifeature quantum convolution with average and Euclidean pooling, thus adapting the CNN structure to a variational quantum algorithm (VQA). The experimental work was conducted using multidimensional data to validate the correctness and demonstrate the scalability of the proposed method utilizing both noisy and noise-free quantum simulations. We evaluated the MQCC model with reference to reported work on state-of-the-art quantum simulators from IBM Quantum and Xanadu using a variety of standard ML datasets. The experimental results show the favorable characteristics of our proposed techniques compared with existing work with respect to a number of quantitative metrics, such as the number of training parameters, cross-entropy loss, classification accuracy, circuit depth, and quantum gate count.
more »
« less
Optimizing Multidimensional Pooling for Variational Quantum Algorithms
Convolutional neural networks (CNNs) have proven to be a very efficient class of machine learning (ML) architectures for handling multidimensional data by maintaining data locality, especially in the field of computer vision. Data pooling, a major component of CNNs, plays a crucial role in extracting important features of the input data and downsampling its dimensionality. Multidimensional pooling, however, is not efficiently implemented in existing ML algorithms. In particular, quantum machine learning (QML) algorithms have a tendency to ignore data locality for higher dimensions by representing/flattening multidimensional data as simple one-dimensional data. In this work, we propose using the quantum Haar transform (QHT) and quantum partial measurement for performing generalized pooling operations on multidimensional data. We present the corresponding decoherence-optimized quantum circuits for the proposed techniques along with their theoretical circuit depth analysis. Our experimental work was conducted using multidimensional data, ranging from 1-D audio data to 2-D image data to 3-D hyperspectral data, to demonstrate the scalability of the proposed methods. In our experiments, we utilized both noisy and noise-free quantum simulations on a state-of-the-art quantum simulator from IBM Quantum. We also show the efficiency of our proposed techniques for multidimensional data by reporting the fidelity of results.
more »
« less
- Award ID(s):
- 1942973
- PAR ID:
- 10512654
- Publisher / Repository:
- MDPI - Algorithms 2024
- Date Published:
- Journal Name:
- Algorithms
- Volume:
- 17
- Issue:
- 2
- ISSN:
- 1999-4893
- Page Range / eLocation ID:
- 82
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The convolution operation plays a vital role in a wide range of critical algorithms across various domains, such as digital image processing, convolutional neural networks, and quantum machine learning. In existing implementations, particularly in quantum neural networks, convolution operations are usually approximated by the application of filters with data strides that are equal to the filter window sizes. One challenge with these implementations is preserving the spatial and temporal localities of the input features, specifically for data with higher dimensions. In addition, the deep circuits required to perform quantum convolution with a unity stride, especially for multidimensional data, increase the risk of violating decoherence constraints. In this work, we propose depth-optimized circuits for performing generalized multidimensional quantum convolution operations with unity stride targeting applications that process data with high dimensions, such as hyperspectral imagery and remote sensing. We experimentally evaluate and demonstrate the applicability of the proposed techniques by using real-world, high-resolution, multidimensional image data on a state-of-the-art quantum simulator from IBM Quantum.more » « less
-
In recent times, AI and deep learning have witnessed explosive growth in almost every subject involving data. Complex data analyses problems that took prolonged periods, or required laborious manual effort, are now being tackled through AI and deep-learning techniques with unprecedented accuracy. Machine learning (ML) using Convolutional Neural Networks (CNNs) has shown great promise for such applications. However, traditional CPU-based sequential computing no longer can meet the requirements of mission-critical applications which are compute-intensive and require low latency. Heterogeneous computing (HGC), with CPUs integrated with accelerators such as GPUs and FPGAs, offers unique capabilities to accelerate CNNs. In this presentation, we will focus on using FPGA-based reconfigurable computing to accelerate various aspects of CNN. We will begin with the current state of the art in using FPGAs for CNN acceleration, followed by the related R&D activities (outlined below) in the SHREC* Center at the University of Florida, based on which we will discuss the opportunities in heterogeneous computing for machine learning.more » « less
-
INTRODUCTION Solving quantum many-body problems, such as finding ground states of quantum systems, has far-reaching consequences for physics, materials science, and chemistry. Classical computers have facilitated many profound advances in science and technology, but they often struggle to solve such problems. Scalable, fault-tolerant quantum computers will be able to solve a broad array of quantum problems but are unlikely to be available for years to come. Meanwhile, how can we best exploit our powerful classical computers to advance our understanding of complex quantum systems? Recently, classical machine learning (ML) techniques have been adapted to investigate problems in quantum many-body physics. So far, these approaches are mostly heuristic, reflecting the general paucity of rigorous theory in ML. Although they have been shown to be effective in some intermediate-size experiments, these methods are generally not backed by convincing theoretical arguments to ensure good performance. RATIONALE A central question is whether classical ML algorithms can provably outperform non-ML algorithms in challenging quantum many-body problems. We provide a concrete answer by devising and analyzing classical ML algorithms for predicting the properties of ground states of quantum systems. We prove that these ML algorithms can efficiently and accurately predict ground-state properties of gapped local Hamiltonians, after learning from data obtained by measuring other ground states in the same quantum phase of matter. Furthermore, under a widely accepted complexity-theoretic conjecture, we prove that no efficient classical algorithm that does not learn from data can achieve the same prediction guarantee. By generalizing from experimental data, ML algorithms can solve quantum many-body problems that could not be solved efficiently without access to experimental data. RESULTS We consider a family of gapped local quantum Hamiltonians, where the Hamiltonian H ( x ) depends smoothly on m parameters (denoted by x ). The ML algorithm learns from a set of training data consisting of sampled values of x , each accompanied by a classical representation of the ground state of H ( x ). These training data could be obtained from either classical simulations or quantum experiments. During the prediction phase, the ML algorithm predicts a classical representation of ground states for Hamiltonians different from those in the training data; ground-state properties can then be estimated using the predicted classical representation. Specifically, our classical ML algorithm predicts expectation values of products of local observables in the ground state, with a small error when averaged over the value of x . The run time of the algorithm and the amount of training data required both scale polynomially in m and linearly in the size of the quantum system. Our proof of this result builds on recent developments in quantum information theory, computational learning theory, and condensed matter theory. Furthermore, under the widely accepted conjecture that nondeterministic polynomial-time (NP)–complete problems cannot be solved in randomized polynomial time, we prove that no polynomial-time classical algorithm that does not learn from data can match the prediction performance achieved by the ML algorithm. In a related contribution using similar proof techniques, we show that classical ML algorithms can efficiently learn how to classify quantum phases of matter. In this scenario, the training data consist of classical representations of quantum states, where each state carries a label indicating whether it belongs to phase A or phase B . The ML algorithm then predicts the phase label for quantum states that were not encountered during training. The classical ML algorithm not only classifies phases accurately, but also constructs an explicit classifying function. Numerical experiments verify that our proposed ML algorithms work well in a variety of scenarios, including Rydberg atom systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases. CONCLUSION We have rigorously established that classical ML algorithms, informed by data collected in physical experiments, can effectively address some quantum many-body problems. These rigorous results boost our hopes that classical ML trained on experimental data can solve practical problems in chemistry and materials science that would be too hard to solve using classical processing alone. Our arguments build on the concept of a succinct classical representation of quantum states derived from randomized Pauli measurements. Although some quantum devices lack the local control needed to perform such measurements, we expect that other classical representations could be exploited by classical ML with similarly powerful results. How can we make use of accessible measurement data to predict properties reliably? Answering such questions will expand the reach of near-term quantum platforms. Classical algorithms for quantum many-body problems. Classical ML algorithms learn from training data, obtained from either classical simulations or quantum experiments. Then, the ML algorithm produces a classical representation for the ground state of a physical system that was not encountered during training. Classical algorithms that do not learn from data may require substantially longer computation time to achieve the same task.more » « less
-
Deep neural networks, including transformers and convolutional neural networks (CNNs), have significantly improved multivariate time series classification (MTSC). However, these methods often rely on supervised learning, which does not fully account for the sparsity and locality of patterns in time series data (e.g., quantification of diseases-related anomalous points in ECG and abnormal detection in signal). To address this challenge, we formally discuss and reformulate MTSC as a weakly supervised problem, introducing a novel multiple-instance learning (MIL) framework for better localization of patterns of interest and modeling time dependencies within time series. Our novel approach, TimeMIL, formulates the temporal correlation and ordering within a time-aware MIL pooling, leveraging a tokenized transformer with a specialized learnable wavelet positional token. The proposed method surpassed 26 recent state-of-the-art MTSC methods, underscoring the effectiveness of the weakly supervised TimeMIL in MTSC. The code is available https://github.com/xiwenc1/TimeMIL.more » « less
An official website of the United States government

