skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Algorithmic encoding of adaptive responses in temperature-sensing multimaterial architectures
We envision programmable matters that can alter their physical properties in desirable manners based on user input or autonomous sensing. This vision motivates the pursuit of mechanical metamaterials that interact with the environment in a programmable fashion. However, this has not been systematically achieved for soft metamaterials because of the highly nonlinear deformation and underdevelopment of rational design strategies. Here, we use computational morphogenesis and multimaterial polymer 3D printing to systematically create soft metamaterials with arbitrarily programmable temperature-switchable nonlinear mechanical responses under large deformations. This is made possible by harnessing the distinct glass transition temperatures of different polymers, which, when optimally synthesized, produce local and giant stiffness changes in a controllable manner. Featuring complex geometries, the generated structures and metamaterials exhibit fundamentally different yet programmable nonlinear force-displacement relations and deformation patterns as temperature varies. The rational design and fabrication establish an objective-oriented synthesis of metamaterials with freely tunable thermally adaptive behaviors. This imbues structures and materials with environment-aware intelligence.  more » « less
Award ID(s):
2047692 2245251
PAR ID:
10512768
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science Advances
Volume:
9
Issue:
47
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Liquid crystal elastomer (LCE) is a type of soft active material that generates large and reversible spontaneous deformations upon temperature changes, facilitating various environmentally responsive smart applications. Despite their success, most existing LCE metamaterials are designed in a forward fashion based on intuition and feature regular material patterns, which may hinder the reach of LCE’s full potential in producing complex and desired functionalities. Here, we develop a computational inverse design framework for discovering diverse sophisticated temperature-activated and -interactive nonlinear behaviors for LCE metamaterials in a fully controllable fashion. We generate intelligent LCE metamaterials with a wide range of switchable functionalities upon temperature changes. By sensing the environment, these metamaterials can realize maximized spontaneous area expansion/contraction, precisely programmable enclosed opening size change, and temperature-switchable nonlinear stress–strain relations and deformation modes. The optimized unit cells feature irregular LCE patterns and form complex and highly nonlinear mechanisms. The inverse design computational framework, optimized material patterns, and revealed underlying mechanisms fundamentally advance the design capacity of LCE metamaterials, benefiting environment-aware and -adaptive smart materials. 
    more » « less
  2. Kirigami (cutting and/or folding) offers a promising strategy to reconfigure metamaterials. Conventionally, kirigami metamaterials are often composed of passive cut unit cells to be reconfigured under mechanical forces. The constituent stimuli-responsive materials in active kirigami metamaterials instead will enable potential mechanical properties and functionality, arising from the active control of cut unit cells. However, the planar features of hinges in conventional kirigami structures significantly constrain the degrees of freedom (DOFs) in both deformation and actuation of the cut units. To release both constraints, here, we demonstrate a universal design of implementing folds to reconstruct sole-cuts–based metamaterials. We show that the supplemented folds not only enrich the structural reconfiguration beyond sole cuts but also enable more DOFs in actuating the kirigami metasheets into 3 dimensions (3D) in response to environmental temperature. Utilizing the multi-DOF in deformation of unit cells, we demonstrate that planar metasheets with the same cut design can self-fold into programmable 3D kirigami metastructures with distinct mechanical properties. Last, we demonstrate potential applications of programmable kirigami machines and easy-turning soft robots. 
    more » « less
  3. Spinodal metamaterials, with architectures inspired by natural phase-separation processes, have presented a significant alternative to periodic and symmetric morphologies when designing mechanical metamaterials with extreme performance. While their elastic mechanical properties have been systematically determined, their large-deformation, nonlinear responses have been challenging to predict and design, in part due to limited data sets and the need for complex nonlinear simulations. This work presents a novel physics-enhanced machine learning (ML) and optimization framework tailored to address the challenges of designing intricate spinodal metamaterials with customized mechanical properties in large-deformation scenarios where computational modeling is restrictive and experimental data is sparse. By utilizing large-deformation experimental data directly, this approach facilitates the inverse design of spinodal structures with precise finite-strain mechanical responses. The framework sheds light on instability-induced pattern formation in spinodal metamaterialsobserved experimentally and in selected nonlinear simulations—leveraging physics-based inductive biases in the form of nonconvex energetic potentials. Altogether, this combined ML, experimental, and computational effort provides a route for efficient and accurate design of complex spinodal metamaterials for large-deformation scenarios where energy absorption and prediction of nonlinear failure mechanisms is essential. 
    more » « less
  4. null (Ed.)
    Magnetic actuation has emerged as a powerful and versatile mechanism for diverse applications, ranging from soft robotics, biomedical devices to functional metamaterials. This highly interdisciplinary research calls for an easy to use and efficient modeling/simulation platform that can be leveraged by researchers with different backgrounds. Here we present a lattice model for hard-magnetic soft materials by partitioning the elastic deformation energy into lattice stretching and volumetric change, so-called ‘magttice’. Magnetic actuation is realized through prescribed nodal forces in magttice. We further implement the model into the framework of a large-scale atomic/molecular massively parallel simulator (LAMMPS) for highly efficient parallel simulations. The magttice is first validated by examining the deformation of ferromagnetic beam structures, and then applied to various smart structures, such as origami plates and magnetic robots. After investigating the static deformation and dynamic motion of a soft robot, the swimming of the magnetic robot in water, like jellyfish's locomotion, is further studied by coupling the magttice and lattice Boltzmann method (LBM). These examples indicate that the proposed magttice model can enable more efficient mechanical modeling and simulation for the rational design of magnetically driven smart structures. 
    more » « less
  5. Shape‐morphing capabilities of metamaterials can be expanded by developing approaches that enable the integration of different types of cellular structures. Herein, a rational material design process is presented that fits together auxetic (anti‐tetrachiral) and non‐auxetic (the novel nodal honeycomb) lattice structures with a shared grid of nodes to obtain desired values of Poisson's ratios and Young's moduli. Through this scheme, deformation properties can be easily set piece by piece and 3D printed in useful combinations. For example, such nodally integrated tubular lattice structures undergo worm‐like peristalsis or snake‐like undulations that result in faster speeds than the monophasic counterpart in narrow channels and in wider channels, respectively. In a certain scenario, the worm‐like hybrid metamaterial structure traverses between confined spaces that are otherwise impassable for the isotropic variant. These deformation mechanisms allow us to design shape‐morphing structures into customizable soft robot skins that have improved performance in confined spaces. The presented analytical material design approach can make metamaterials more accessible for applications not only in soft robotics but also in medical devices or consumer products. 
    more » « less