skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 20, 2025

Title: Hemilabile and Redox‐Active Quinone Ligands Unlock sp 3 ‐Rich Couplings in Nickel‐Catalyzed Olefin Carbosulfenylation
Abstract A three‐component coupling approach toward structurally complex dialkylsulfides is described via the nickel‐catalyzed 1,2‐carbosulfenylation of unactivated alkenes with organoboron nucleophiles and alkylsulfenamide (N−S) electrophiles. Efficient catalytic turnover is facilitated using a tailored N−S electrophile containing anN‐methyl methanesulfonamide leaving group, allowing catalyst loadings as low as 1 mol %. Regioselectivity is controlled by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, amides, sulfinamides, phosphoramides, and carbamates. Key to the development of this transformation is the identification of quinones as a family of hemilabile and redox‐active ligands that tune the steric and electronic properties of the metal throughout the catalytic cycle. Density functional theory (DFT) results show that the duroquinone (DQ) ligand adopts different coordination modes in different stages of the Ni‐catalyzed 1,2‐carbosulfenylation‐binding as an η6capping ligand to stabilize the precatalyst/resting state and prevent catalyst decomposition, binding as an X‐type redox‐active durosemiquinone radical anion to promote alkene migratory insertion with a less distorted square planar Ni(II) center, and binding as an L‐type ligand to promote N−S oxidative addition at a relatively more electron‐rich Ni(I) center.  more » « less
Award ID(s):
2102550
PAR ID:
10596428
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
63
Issue:
52
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Photoredox nickel catalysis has emerged as a powerful strategy for cross-coupling reactions. Although the involvement of paramagnetic Ni(I)/Ni(III) species as active intermediates in the catalytic cycle has been proposed, a thorough spectroscopic investigation of these species is lacking. Herein, we report the tridentate pyridinophane ligandsRN3 that allow for detailed mechanistic studies of the photocatalytic C–O coupling reaction. The derived (RN3)Ni complexes are active catalysts under mild conditions and without an additional photocatalyst. We also provide direct evidence for the key steps involving paramagnetic Ni species in the proposed catalytic cycle: the oxidative addition of an aryl halide to a Ni(I) species, the ligand exchange/transmetalation at a Ni(III) center, and the C–O reductive elimination from a Ni(III) species. Overall, the present work suggests theRN3 ligands are a practical platform for mechanistic studies of Ni-catalyzed reactions and for the development of new catalytic applications. 
    more » « less
  2. Abstract Although many monometallic active sites have been installed in metal–organic frameworks (MOFs) for catalytic reactions, there are no effective strategies to generate bimetallic catalysts in MOFs. Here we report the synthesis of a robust, efficient, and reusable MOF catalyst, MOF‐NiH, by adaptively generating and stabilizing dinickel active sites using the bipyridine groups in MOF‐253 with the formula of Al(OH)(2,2′‐bipyridine‐5,5′‐dicarboxylate) forZ‐selective semihydrogenation of alkynes and selective hydrogenation of C=C bonds in α,β‐unsaturated aldehydes and ketones. Spectroscopic studies established the dinickel complex (bpy⋅)NiII2‐H)2NiII(bpy⋅) as the active catalyst. MOF‐NiH efficiently catalyzed selective hydrogenation reactions with turnover numbers of up to 192 and could be used in five cycles of hydrogenation reactions without catalyst leaching or significant decrease of catalytic activities. The present work uncovers a synthetic strategy toward solution‐inaccessible Earth‐abundant bimetallic MOF catalysts for sustainable catalysis. 
    more » « less
  3. Abstract We report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6‐tri‐tert‐butylphenoxyl (tBu3ArO⋅) as a H atom acceptor to cleave the N−H bond of a coordinated NH3ligand up to 56 equiv of N2per Ni center can be generated. Employing theN‐oxyl radical 2,2,6,6‐(tetramethylpiperidin‐1‐yl)oxyl (TEMPO⋅) as the H‐atom acceptor, up to 15 equiv of N2per Ni center are formed. A bridging Ni‐hydrazine product identified by isotopic nitrogen (15N) studies and supported by computational models indicates the N−N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]−NH2fragments. Ni‐mediated hydrazine disproportionation to N2and NH3completes the catalytic cycle. 
    more » « less
  4. Abstract CTEA (N,N‐bis[2‐(carboxylmethyl)thioethyl]amine) is a mixed donor ligand that has been incorporated into multiple fluorescent sensors such as NiSensor‐1 that was reported to be selective for Ni2+. Other metal ions such as Zn2+do not produce an emission response in aqueous solution. To investigate the coordination chemistry and selectivity of this receptor, we prepared NiCast, a photocage containing the CTEA receptor. Cast photocages undergo a photoreaction that decreases electron density on a metal‐bound aniline nitrogen atom, which shifts the binding equilibrium toward unbound metal ion. The unique selectivity of CTEA was examined by measuring the binding affinity of NiCast and the CTEA receptor for Ni2+, Zn2+, Cd2+and Cu2+under different conditions. In aqueous solution, Ni2+binds more strongly to the aniline nitrogen atom than Cd2+; however, in CH3CN, the change in affinity virtually disappears. The crystal structure of [Cu(CTEA)], which exhibits a Jahn–Teller–distorted square pyramidal structure, was also analyzed to gain more insight into the underlying coordination chemistry. These studies suggest that the fluorescence selectivity of NiSensor‐1 in aqueous solution is due to a stronger interaction between the aniline nitrogen atom and Ni2+compared to other divalent metal ions except Cu2+
    more » « less
  5. Abstract Carbosulfenylation of olefins represents an important class of reactions for the synthesis of structurally diverse organosulfur compounds. Previous studies typically yield 1,2‐regioselectivity. In the context of diversity‐oriented synthesis, accessing the regioreversed products is desirable, significantly broadening the scope of these reactions. In this study, we report a nickel‐catalyzed 2,1‐carbosulfenylation of trifluoromethyl‐ andgem‐difluoroalkenes, using free thiols and benzyl bromides as sulfur and carbon sources, respectively. The unusual regioselectivity observed is enabled by a “radical sorting” mechanism. The Ni catalyst activates benzyl bromide to generate a benzylic radical that undergoes hydrogen atom transfer (HAT) with the thiol to form a sulfur‐centered radical. The sulfur radical subsequently adds to the fluoroalkenes, resulting in an α‐fluoroalkyl C‐radical. This radical undergoes SH2 with a Ni–CH2Ar to form a C(sp3)─C(sp3) bond and quaternary center, ultimately producing valuable fluoroalkyl thioethers. Isotopic labeling experiments corroborate a hydrogen atom transfer (HAT) event within the working mechanism. 
    more » « less