skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2236578

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gradual typing has emerged as a promising typing discipline for reconciling static and dynamic typing, which have respective strengths and shortcomings. Thanks to its promises, gradual typing has gained tremendous momentum in both industry and academia. A main challenge in gradual typing is that, however, the performance of its programs can often be unpredictable, and adding or removing the type of a a single parameter may lead to wild performance swings. Many approaches have been proposed to optimize gradual typing performance, but little work has been done to aid the understanding of the performance landscape of gradual typing and navigating the migration process (which adds type annotations to make programs more static) to avert performance slowdowns. Motivated by this situation, this work develops a machine-learning-based approach to predict the performance of each possible way of adding type annotations to a program. On top of that, many supports for program migrations could be developed, such as finding the most performant neighbor of any given configuration. Our approach gauges runtime overheads of dynamic type checks inserted by gradual typing and uses that information to train a machine learning model, which is used to predict the running time of gradual programs. We have evaluated our approach on 12 Python benchmarks for both guarded and transient semantics. For guarded semantics, our evaluation results indicate that with only 40 training instances generated from each benchmark, the predicted times for all other instances differ on average by 4% from the measured times. For transient semantics, the time difference ratio is higher but the time difference is often within 0.1 seconds. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  2. Quantifying uncertainties for machine learning models is a critical step to reduce human verification effort by detecting predictions with low confidence. This paper proposes a method for uncertainty quantification (UQ) of table structure recognition (TSR). The proposed UQ method is built upon a mixture-of-expert approach termed Test-Time Augmentation (TTA). Our key idea is to enrich and diversify the table representations, to spotlight the cells with high recognition uncertainties. To evaluate the effectiveness, we proposed two heuristics to differentiate highly uncertain cells from normal cells, namely, masking and cell complexity quantification. Masking involves varying the pixel intensity to deem the detection uncertainty. Cell complexity quantification gauges the uncertainty of each cell by its topological relation with neighboring cells. The evaluation results based on standard benchmark datasets demonstrate that the proposed method is effective in quantifying uncertainty in TSR models. To our best knowledge, this study is the first of its kind to enable UQ in TSR tasks. 
    more » « less
    Free, publicly-accessible full text available May 21, 2025
  3. Taking incompatible multiple drugs together may cause adverse interactions and side effects on the body. Accurate prediction of drug-drug interaction (DDI) events is essential for avoiding this issue. Recently, various artificial intelligence-based approaches have been proposed for predicting DDI events. However, DDI events are associated with complex relationships and mechanisms among drugs, targets, enzymes, transporters, molecular structures, etc. Existing approaches either partially or loosely consider these relationships and mechanisms by a non-end-to-end learning framework, resulting in sub-optimal feature extractions and fusions for prediction. Different from them, this paper proposes a Multimodal Knowledge Graph Fused End-to-end Neural Network (MKGFENN) that consists of two main parts: multimodal knowledge graph (MKG) and fused end-to-end neural network (FENN). First, MKG is constructed by comprehensively exploiting DDI events-associated relationships and mechanisms from four knowledge graphs of drugs-chemical entities, drug-substructures, drugs-drugs, and molecular structures. Correspondingly, a four channels graph neural network is designed to extract high-order and semantic features from MKG. Second, FENN designs a multi-layer perceptron to fuse the extracted features by end-to-end learning. With such designs, the feature extractions and fusions of DDI events are guaranteed to be comprehensive and optimal for prediction. Through extensive experiments on real drug datasets, we demonstrate that MKG-FENN exhibits high accuracy and significantly outperforms state-of-the-art models in predicting DDI events. The source code and supplementary file of this article are available on: https://github.com/wudi1989/MKG-FENN.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  4. Label Distribution Learning (LDL), as a more general learning setting than generic single-label and multi-label learning, has been commonly used in computer vision and many other applications. To date, existing LDL approaches are designed and applied to data without considering the interdependence between instances. In this paper, we propose a Graph Label Distribution Learning (GLDL) framework, which explicitly models three types of relationships: instance-instance, label-label, and instance-label, to learn the label distribution for networked data. A label-label network is learned to capture label-to-label correlation, through which GLDL can accurately learn label distributions for nodes. Dual graph convolution network (GCN) Co-training with heterogeneous message passing ensures two GCNs, one focusing on instance-instance relationship and the other one targeting label-label correlation, are jointly trained such that instance-instance relationship can help induce label-label correlation and vice versa. Our theoretical study derives the error bound of GLDL. For verification, four benchmark datasets with label distributions for nodes are created using common graph benchmarks. The experiments show that considering dependency helps learn better label distributions for networked data, compared to state-of-the-art LDL baseline. In addition, GLDL not only outperforms simple GCN and graph attention networks (GAT) using distribution loss but is also superior to its variant considering label-label relationship as a static network. GLDL and its benchmarks are the first research endeavors to address LDL for graphs. Code and benchmark data are released for public access.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  5. In this paper, we explore a novel online learning setting, where the online learners are presented with “doubly-streaming” data. Namely, the data instances constantly streaming in are described by feature spaces that over-time evolve, with new features emerging and old features fading away. The main challenge of this problem lies in the fact that the newly emerging features are described by very few samples, resulting in weak learners that tend to make error predictions. A seemingly plausible idea to overcome the challenge is to establish a relationship between the old and new feature spaces, so that an online learner can leverage the knowledge learned from the old features to better the learning performance on the new features. Unfortunately, this idea does not scale up to high-dimensional feature spaces that entail very complex feature interplay. Specifically. a tradeoff between onlineness, which biases shallow learners, and expressiveness, which requires deep models, is inevitable. Motivated by this, we propose a novel paradigm, named Online Learning Deep models from Data of Double Streams (OLD3S), where a shared latent subspace is discovered to summarize information from the old and new feature spaces, building an intermediate feature mapping relationship. A key trait of OLD3S is to treat the model capacity as a learnable semantics, aiming to yield optimal model depth and parameters jointly in accordance with the complexity and non-linearity of the input data streams in an online fashion. To ablate its efficacy and applicability, two variants of OLD3S are proposed namely, OLD-Linear that learns the relationship by a linear function; and OLD-FD learns that two consecutive feature spaces pre-and-post evolution with fixed deep depth. Besides, instead of re-starting the entire learning process from scratch, OLD3S learns multiple newly emerging feature spaces in a lifelong manner, retaining the knowledge from the learned and vanished feature space to enjoy a jump-start of the new features’ learning process. Both theoretical analysis and empirical studies substantiate the viability and effectiveness of our proposed approach. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  6. Sparse online learning has received extensive attention during the past few years. Most of existing algorithms that utilize ℓ1-norm regularization or ℓ1-ball projection assume that the feature space is fixed or changes by following explicit constraints. However, this assumption does not always hold in many real applications. Motivated by this observation, we propose a new online learning algorithm tailored for data streams described by open feature spaces, where new features can be occurred, and old features may be vanished over various time spans. Our algorithm named RSOL provides a strategy to adapt quickly to such feature dynamics by encouraging sparse model representation with an ℓ1- and ℓ2-mixed regularizer. We leverage the proximal operator of the ℓ1,2-mixed norm and show that our RSOL algorithm enjoys a closed-form solution at each iteration. A sub-linear regret bound of our proposed algorithm is guaranteed with a solid theoretical analysis. Empirical results benchmarked on nine streaming datasets validate the effectiveness of the proposed RSOL method over three state-of-the-art algorithms. Keywords: online learning, sparse learning, streaming feature selection, open feature spaces, ℓ1,2 mixed norm 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  7. Point-of-Interest (POI) recommendation, pivotal for guiding users to their next interested locale, grapples with the persistent challenge of data sparsity. Whereas knowledge graphs (KGs) have emerged as a favored tool to mitigate the issue, existing KG-based methods tend to overlook two crucial elements: the intention steering users’ location choices and the high-order topological structure within the KG. In this paper, we craft an Intention-aware Knowledge Graph (IKG) that harmonizes users’ visit histories, movement trajectories, and location categories to model user intentions. Building upon IKG, our novel Intentionaware Knowledge Graph Network (IKGN) delves deeper into the POI recommendation by weighing and propagating node embeddings through an attention mechanism, capturing the unique locational intent of each user. A sequential model like GRU is then employed to ensure a comprehensive representation of users’ short- and long-term location preferences. An empirical study on two real-world datasets validates the effectiveness of our proposed IKGN, with it markedly outshining seven benchmark rival models in both Recall and NDCG metrics. 
    more » « less