skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Anonymous and Copy-Robust Delegations for Liquid Democracy
Liquid democracy with ranked delegations is a novel voting scheme that unites the practicability of representative democracy with the idealistic appeal of direct democracy: Every voter decides between casting their vote on a question at hand or delegating their voting weight to some other, trusted agent. Delegations are transitive, and since voters may end up in a delegation cycle, they are encouraged to indicate not only a single delegate, but a set of potential delegates and a ranking among them. Based on the delegation preferences of all voters, a delegation rule selects one representative per voter. Previous work has revealed a trade-off between two properties of delegation rules called anonymity and copy-robustness. To overcome this issue we study two fractional delegation rules: Mixed Borda branching, which generalizes a rule satisfying copy-robustness, and the random walk rule, which satisfies anonymity. Using the Markov chain tree theorem, we show that the two rules are in fact equivalent, and simultaneously satisfy generalized versions of the two properties. Combining the same theorem with Fulkerson's algorithm, we develop a polynomial-time algorithm for computing the outcome of the studied delegation rule. This algorithm is of independent interest, having applications in semi-supervised learning and graph theory.  more » « less
Award ID(s):
1928930
PAR ID:
10512877
Author(s) / Creator(s):
;
Editor(s):
Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S
Publisher / Repository:
Curran Associates, Inc.
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
36
ISSN:
1049-5258
Page Range / eLocation ID:
69441-69463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce Flexible Representative Democracy (FRD), a novel hybrid of Representative Democracy and Direct Democracy in which voters can alter the issue-dependent weights of a set of elected representatives. In line with the literature on Interactive Democracy, our model allows the voters to actively determine the degree to which the system is direct versus representative. However, unlike Liquid Democracy, Flexible Representative Democracy uses strictly non-transitive delegations, making delegation cycles impossible, and maintains a fixed set of accountable, elected representatives. We present Flexible Representative Democracy and analyze it using a computational approach with issues that are binary and symmetric. We compare the outcomes of various voting systems using Direct Democracy with majority voting as an ideal baseline. First, we demonstrate the shortcomings of Representative Democracy in our model. We provide NP-Hardness results for electing an ideal set of representatives, discuss pathologies, and demonstrate empirically that common multi-winner election rules for selecting representatives do not perform well in expectation. To analyze the effects of adding delegation to representative voting systems, we begin by providing theoretical results on how issue-specific delegations determine outcomes. Finally, we provide empirical results comparing the outcomes of various voting systems: Representative Democracy, Proxy Voting, and FRD with issue-specific delegations. Our results show that variants of Proxy Voting yield no discernible benefit over unweighted representatives and reveal the potential for Flexible Representative Democracy to improve outcomes as voter participation increases. 
    more » « less
  2. \ (Ed.)
    Fluid (or liquid) democracy is a voting paradigm that allows voters to choose between directly voting and transitively delegating their votes to other voters. While fluid democracy has been viewed as a system that can combine the best aspects of direct and representative democracy, it can also result in situations where few voters amass a large amount of influence. To analyze the impact of this shortcoming, we consider what has been called an epistemic setting, where voters decide on a binary issue for which there is a ground truth. Previous work has shown that under certain assumptions on the delegation mechanism, the concentration of power is so severe that fluid democracy is less likely to identify the ground truth than direct voting. We examine different, arguably more realistic, classes of mechanisms, and prove they behave well by ensuring that (with high probability) there is a limit on concentration of power. Our proofs demonstrate that delegations can be treated as stochastic processes and that they can be compared to well-known processes from the literature — such as preferential attachment and multi-types branching process—that are sufficiently bounded for our purposes. Our results suggest that the concerns raised about fluid democracy can be overcome, thereby bolstering the case for this emerging paradigm. 
    more » « less
  3. null (Ed.)
    We study liquid democracy, a collective decision making paradigm that allows voters to transitively delegate their votes, through an algorithmic lens. In our model, there are two alternatives, one correct and one incorrect, and we are interested in the probability that the majority opinion is correct. Our main question is whether there exist delegation mechanisms that are guaranteed to outperform direct voting, in the sense of being always at least as likely, and sometimes more likely, to make a correct decision. Even though we assume that voters can only delegate their votes to better-informed voters, we show that local delegation mechanisms, which only take the local neighborhood of each voter as input (and, arguably, capture the spirit of liquid democracy), cannot provide the foregoing guarantee. By contrast, we design a non-local delegation mechanism that does provably outperform direct voting under mild assumptions about voters. 
    more » « less
  4. The conventional (election) voting systems, e.g., representative democracy, have many limitations and often fail to serve the best interest of the people in a collective decision-making process. To address this issue, the concept of liquid democracy has been emerging as an alternative decision-making model to make better use of “the wisdom of crowds”. However, there is no known cryptographically secure e-voting implementation that supports liquid democracy. In this work, we propose a new voting concept called statement voting, which can be viewed as a natural extension of the conventional voting approaches. In the statement voting, instead of defining a concrete elec- tion candidate, each voter can define a statement in his/her ballot but leave the vote “undefined” during the voting phase. During the tally phase, the (conditional) actions expressed in the statement will be carried out to determine the final vote. We initiate the study of statement voting under the Universal Composability (UC) framework, and propose several construction frameworks together with their instantiations. As an application, we show how statement voting can be used to realize a UC-secure liquid democracy voting system. We remark that our statement voting can be extended to enable more complex voting and generic ledger-based non-interactive multi-party computation. We believe that the statement voting concept opens a door for constructing a new class of e-voting schemes. 
    more » « less
  5. With each successive election since at least 1994, congressional elections in the United States have transitioned toward nationalized two-party government. Fewer voters split their tickets for different parties between President and Congress. Regional blocs and incumbency voting --- a key feature of U.S. elections in the latter 20th century --- appear to have given way to strong party discipline among candidates and nationalized partisanship among voters. Observers of modern American politics are therefore tempted to write off the importance of the swing voter, defined here as voters who are indifferent between the two parties and thus likely to split their ticket or switch their party support. By assembling data from historical elections (1950 -- 2020), surveys (2008 -- 2018), and cast vote record data (2010 -- 2018), and through developing statistical methods to analyze such data, I argue that although they comprise a smaller portion of the electorate, each swing voter is disproportionately decisive in modern American politics, a phenomenon I call the swing voter paradox. Historical comparisons across Congressional, state executive, and state legislative elections confirm the decline in aggregate measures of ticket splitting suggested in past work. But the same indicator has not declined nearly as much in county legislative or county sheriff elections (Chapter 1). Ticket splitters and party switchers tend to be voters with low news interest and ideological moderate. Consistent with a spatial voting model with valence, voters also become ticket splitters when incumbents run (Chapter 2). I then provide one of the first direct measures of ticket splitting instate and local office using cast vote records. I find that ticket splitting is more prevalent in state and local elections (Chapter 3). This is surprising given the conventional wisdom that party labels serve as heuristics and down-ballot elections are low information environments. A major barrier for existing studies of the swing voter lies in the measurement from incomplete electoral data. Traditional methods struggle to extract information about subgroups from large surveys or cast vote records, because of small subgroup samples, multi-dimensional data, and systematic missingness. I therefore develop a procedure for reweighting surveys to small areas through expanding poststratification targets (Chapter 4), and a clustering algorithm for survey or ballot data with multiple offices to extract interpretable voting blocs (Chapter 5). I provide open-source software to implement both methods. These findings challenge a common characterization of modern American politics as one dominated by rigidly polarized parties and partisans. The picture that emerges instead is one where swing voters are rare but can dramatically decide the party in power, and where no single demographic group is a swing voter. Instead of entrenching elections into red states and blue states, nationalization may heighten the role of the persuadable voter. 
    more » « less