A seller trades withqout ofnbuyers who have valuationsa1 ≥ a2 ≥ ⋯ ≥ an > 0 via sequential bilateral bargaining. Whenq < n, buyer payoffs vary across equilibria in the patient limit, but seller payoffs do not, and converge to maxl≤q+1[(a1+a2+⋯+al−1)/2+al+1+⋯+aq+1]. Ifl*is the (generically unique) maximizer of this optimization problem, then each buyeri < l*trades with probability 1 at the fair priceai/2, while buyersi ≥ l*are excluded from trade with positive probability. Bargaining with buyers who face the threat of exclusion is driven by asequential outside option principle: the seller can sequentially exercise the outside option of trading with the extra marginal buyerq + 1, then with the new extra marginal buyerq, and so on, extracting full surplus from each buyer in this sequence and enhancing the outside option at every stage. A seller who can serve all buyers (q = n) may benefit from creating scarcity by committing to exclude some remaining buyers as negotiations proceed. Anoptimal exclusion commitment, within a general class, excludes a single buyer but maintains flexibility about which buyer is excluded. Results apply symmetrically to a buyer bargaining with multiple sellers. 
                        more » 
                        « less   
                    
                            
                            Non-excludable Bilateral Trade between Groups
                        
                    
    
            Bilateral trade is one of the most natural and important forms of economic interaction: A seller has a single, indivisible item for sale, and a buyer is potentially interested. The two parties typically have different, privately known valuations for the item, and ideally, they would like to trade if the buyer values the item more than the seller. The celebrated impossibility result by Myerson and Satterthwaite shows that any mechanism for this setting must violate at least one important desideratum. In this paper, we investigate a richer paradigm of bilateral trade, with many self-interested buyers and sellers on both sides of a single trade who cannot be excluded from the trade. We show that this allows for more positive results. In fact, we establish a dichotomy in the possibility of trading efficiently. If in expectation, the buyers value the item more, we can achieve efficiency in the limit. If this is not the case, then efficiency cannot be achieved in general. En route, we characterize trading mechanisms that encourage truth-telling, which may be of independent interest. We also evaluate our trading mechanisms experimentally, and the experiments align with our theoretical results. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1928930
- PAR ID:
- 10512980
- Publisher / Repository:
- AAAI
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 38
- Issue:
- 9
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 9952 to 9959
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Mohar, Bojan; Shinkar, Igor; O'Donnell, Ryan (Ed.)We study the bilateral trade problem where a seller owns a single indivisible item, and a potential buyer seeks to purchase it. Previous mechanisms for this problem only considered the case where the values of the buyer and the seller are drawn from independent distributions. In contrast, this paper studies bilateral trade mechanisms when the values are drawn from a joint distribution. We prove that the buyer-offering mechanism guarantees an approximation ratio of e/e−1 ≈ 1.582 to the social welfare even if the values are drawn from a joint distribution. The buyer-offering mechanism is Bayesian incentive compatible, but the seller has a dominant strategy. We prove the buyer-offering mechanism is optimal in the sense that no Bayesian mechanism where one of the players has a dominant strategy can obtain an approximation ratio better than e/e−1. We also show that no mechanism in which both sides have a dominant strategy can provide any constant approximation to the social welfare when the values are drawn from a joint distribution. Finally, we prove some impossibility results on the power of general Bayesian incentive compatible mechanisms. In particular, we show that no deterministic Bayesian incentive-compatible mechanism can provide an approximation ratio better than 1+ln2/2≈ 1.346.more » « less
- 
            Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus.more » « less
- 
            We study gains from trade in multi-dimensional two-sided markets. Specifically, we focus on a setting with n heterogeneous items, where each item is owned by a different seller i, and there is a constrained-additive buyer with feasibility constraint ℱ. Multi-dimensional settings in one-sided markets, e.g. where a seller owns multiple heterogeneous items but also is the mechanism designer, are well-understood. In addition, single-dimensional settings in two-sided markets, e.g. where a buyer and seller each seek or own a single item, are also well-understood. Multi-dimensional two-sided markets, however, encapsulate the major challenges of both lines of work: optimizing the sale of heterogeneous items, ensuring incentive-compatibility among both sides of the market, and enforcing budget balance. We present, to the best of our knowledge, the first worst-case approximation guarantee for gains from trade in a multi-dimensional two-sided market. Our first result provides an O(log(1/r))-approximation to the first-best gains from trade for a broad class of downward-closed feasibility constraints (such as matroid, matching, knapsack, or the intersection of these). Here r is the minimum probability over all items that a buyer's value for the item exceeds the seller's cost. Our second result removes the dependence on r and provides an unconditional O(log n)-approximation to the second-best gains from trade. We extend both results for a general constrained-additive buyer, losing another O(log n)-factor en-route. The first result is achieved using a fixed posted price mechanism, and the analysis involves a novel application of the prophet inequality or a new concentration inequality. Our second result follows from a stitching lemma that allows us to upper bound the second-best gains from trade by the first-best gains from trade from the “likely to trade” items (items with trade probability at least 1/n) and the optimal profit from selling the “unlikely to trade” items. We can obtain an O(log n)-approximation to the first term by invoking our O(log(1/r))-approximation on the “likely to trade” items. We introduce a generalization of the fixed posted price mechanism—seller adjusted posted price—to obtain an O(log n)-approximation to the optimal profit for the “unlikely to trade” items. Unlike fixed posted price mechanisms, not all seller adjusted posted price mechanisms are incentive compatible and budget balanced. We develop a new argument based on “allocation coupling” to show the seller adjusted posted price mechanism used in our approximation is indeed budget balanced and incentive-compatible.more » « less
- 
            We consider the problem of a single seller repeatedly selling a single item to a single buyer (specifically, the buyer has a value drawn fresh from known distribution $$D$$ in every round). Prior work assumes that the buyer is fully rational and will perfectly reason about how their bids today affect the seller's decisions tomorrow. In this work we initiate a different direction: the buyer simply runs a no-regret learning algorithm over possible bids. We provide a fairly complete characterization of optimal auctions for the seller in this domain. Specifically: 1) If the buyer bids according to EXP3 (or any ``mean-based'' learning algorithm), then the seller can extract expected revenue arbitrarily close to the expected welfare. This auction is independent of the buyer's valuation $$D$$, but somewhat unnatural as it is sometimes in the buyer's interest to overbid. 2) There exists a learning algorithm $$\mathcal{A}$$ such that if the buyer bids according to $$\mathcal{A}$$ then the optimal strategy for the seller is simply to post the Myerson reserve for $$D$$ every round. 3) If the buyer bids according to EXP3 (or any ``mean-based'' learning algorithm), but the seller is restricted to ``natural'' auction formats where overbidding is dominated (e.g. Generalized First-Price or Generalized Second-Price), then the optimal strategy for the seller is a pay-your-bid format with decreasing reserves over time. Moreover, the seller's optimal achievable revenue is characterized by a linear program, and can be unboundedly better than the best truthful auction yet simultaneously unboundedly worse than the expected welfare.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    