We study gains from trade in multi-dimensional two-sided markets. Specifically, we focus on a setting with n heterogeneous items, where each item is owned by a different seller i, and there is a constrained-additive buyer with feasibility constraint ℱ. Multi-dimensional settings in one-sided markets, e.g. where a seller owns multiple heterogeneous items but also is the mechanism designer, are well-understood. In addition, single-dimensional settings in two-sided markets, e.g. where a buyer and seller each seek or own a single item, are also well-understood. Multi-dimensional two-sided markets, however, encapsulate the major challenges of both lines of work: optimizing the sale of heterogeneous items, ensuring incentive-compatibility among both sides of the market, and enforcing budget balance. We present, to the best of our knowledge, the first worst-case approximation guarantee for gains from trade in a multi-dimensional two-sided market.
Our first result provides an O(log(1/r))-approximation to the first-best gains from trade for a broad class of downward-closed feasibility constraints (such as matroid, matching, knapsack, or the intersection of these). Here r is the minimum probability over all items that a buyer's value for the item exceeds the seller's cost. Our second result removes the dependence on r and provides an unconditional O(log n)-approximation to the second-best gains from trade. We extend both results for a general constrained-additive buyer, losing another O(log n)-factor en-route. The first result is achieved using a fixed posted price mechanism, and the analysis involves a novel application of the prophet inequality or a new concentration inequality. Our second result follows from a stitching lemma that allows us to upper bound the second-best gains from trade by the first-best gains from trade from the “likely to trade” items (items with trade probability at least 1/n) and the optimal profit from selling the “unlikely to trade” items. We can obtain an O(log n)-approximation to the first term by invoking our O(log(1/r))-approximation on the “likely to trade” items. We introduce a generalization of the fixed posted price mechanism—seller adjusted posted price—to obtain an O(log n)-approximation to the optimal profit for the “unlikely to trade” items. Unlike fixed posted price mechanisms, not all seller adjusted posted price mechanisms are incentive compatible and budget balanced. We develop a new argument based on “allocation coupling” to show the seller adjusted posted price mechanism used in our approximation is indeed budget balanced and incentive-compatible.
more »
« less
This content will become publicly available on June 11, 2025
Bilateral Trade with Correlated Values
We study the bilateral trade problem where a seller owns a single indivisible item, and a potential buyer seeks to purchase it. Previous mechanisms for this problem only considered the case where the values of the buyer and the seller are drawn from independent distributions. In contrast, this paper studies bilateral trade mechanisms when the values are drawn from a joint distribution. We prove that the buyer-offering mechanism guarantees an approximation ratio of e/e−1 ≈ 1.582 to the social welfare even if the values are drawn from a joint distribution. The buyer-offering mechanism is Bayesian incentive compatible, but the seller has a dominant strategy. We prove the buyer-offering mechanism is optimal in the sense that no Bayesian mechanism where one of the players has a dominant strategy can obtain an approximation ratio better than e/e−1. We also show that no mechanism in which both sides have a dominant strategy can provide any constant approximation to the social welfare when the values are drawn from a joint distribution. Finally, we prove some impossibility results on the power of general Bayesian incentive compatible mechanisms. In particular, we show that no deterministic Bayesian incentive-compatible mechanism can provide an approximation ratio better than 1+ln2/2≈ 1.346.
more »
« less
- Award ID(s):
- 2127781
- NSF-PAR ID:
- 10525740
- Editor(s):
- Mohar, Bojan; Shinkar, Igor; O'Donnell, Ryan
- Publisher / Repository:
- ACM
- Date Published:
- Subject(s) / Keyword(s):
- bilateral trade, incentive compatibility
- Format(s):
- Medium: X
- Location:
- Vancouver BC Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Naor, Joseph ; Buchbinder, Niv (Ed.)We consider the bilateral trade problem, in which two agents trade a single indivisible item. It is known that the only dominant-strategy truthful mechanism is the fixed-price mechanism: given commonly known distributions of the buyer's value B and the seller's value S, a price p is offered to both agents and trade occurs if S ≤ p ≤ B. The objective is to maximize either expected welfare or expected gains from trade . We improve the approximation ratios for several welfare maximization variants of this problem. When the agents' distributions are identical, we show that the optimal approximation ratio for welfare is . With just one prior sample from the common distribution, we show that a 3/4-approximation to welfare is achievable. When agents' distributions are not required to be identical, we show that a previously best-known (1–1/e)-approximation can be strictly improved, but 1–1/e is optimal if only the seller's distribution is known.more » « less
-
We consider the problem of a single seller repeatedly selling a single item to a single buyer (specifically, the buyer has a value drawn fresh from known distribution $D$ in every round). Prior work assumes that the buyer is fully rational and will perfectly reason about how their bids today affect the seller's decisions tomorrow. In this work we initiate a different direction: the buyer simply runs a no-regret learning algorithm over possible bids. We provide a fairly complete characterization of optimal auctions for the seller in this domain. Specifically: 1) If the buyer bids according to EXP3 (or any ``mean-based'' learning algorithm), then the seller can extract expected revenue arbitrarily close to the expected welfare. This auction is independent of the buyer's valuation $D$, but somewhat unnatural as it is sometimes in the buyer's interest to overbid. 2) There exists a learning algorithm $\mathcal{A}$ such that if the buyer bids according to $\mathcal{A}$ then the optimal strategy for the seller is simply to post the Myerson reserve for $D$ every round. 3) If the buyer bids according to EXP3 (or any ``mean-based'' learning algorithm), but the seller is restricted to ``natural'' auction formats where overbidding is dominated (e.g. Generalized First-Price or Generalized Second-Price), then the optimal strategy for the seller is a pay-your-bid format with decreasing reserves over time. Moreover, the seller's optimal achievable revenue is characterized by a linear program, and can be unboundedly better than the best truthful auction yet simultaneously unboundedly worse than the expected welfare.more » « less
-
Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus.more » « less
-
Stefano Leonardi (Ed.)We study the communication complexity of dominant strategy implementations of combinatorial auctions. We start with two domains that are generally considered “easy”: multi-unit auctions with decreasing marginal values and combinatorial auctions with gross substitutes valuations. For both domains we have fast algorithms that find the welfare-maximizing allocation with communication complexity that is poly-logarithmic in the input size. This immediately implies that welfare maximization can be achieved in ex-post equilibrium with no significant communication cost, by using VCG payments. In contrast, we show that in both domains the communication complexity of any dominant strategy implementation that achieves the optimal welfare is polynomial in the input size. We then move on to studying the approximation ratios achievable by dominant strategy mechanisms. For multi-unit auctions with decreasing marginal values, we provide a dominant-strategy communication FPTAS. For combinatorial auctions with general valuations, we show that there is no dominant strategy mechanism that achieves an approximation ratio better than m1−є that uses poly(m,n) bits of communication, where m is the number of items and n is the number of bidders. In contrast, a randomized dominant strategy mechanism that achieves an O(√m) approximation with poly(m,n) communication is known. This proves the first gap between computationally efficient deterministic dominant strategy mechanisms and randomized ones. En route, we answer an open question on the communication cost of implementing dominant strategy mechanisms for more than two players, and also solve some open problems in the area of simultaneous combinatorial auctions.more » « less