skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SSS: Towards Autonomous Drone Delivery to Your Door Over House-Aware Semantics
In this work, we present our attempt to tackle the last-hundred-feet problem for autonomous drone delivery.We take a computer-vision based approach to progressively landing towards a convenient and safe drop-off point at all times (here, at the front/garage door). Specifically, we develop structural semantic segmentation (SSS), a new technique that leverages a single-family house structure to streamline and enhance semantic segmentation in the drop-to-door problem context.We implement SSS into an Android app; Our preliminary evaluation in a residential zone shows SSS is promising to make autonomous drop-to-door in real-time, with no need to wait for slow visual processing. Video demo is available at Youtube [5]. App is released at Github [6].  more » « less
Award ID(s):
1750953
PAR ID:
10512986
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
HOTMOBILE '24: Proceedings of the 25th International Workshop on Mobile Computing Systems and Applications
ISBN:
9798400704970
Page Range / eLocation ID:
33 to 39
Format(s):
Medium: X
Location:
San Diego CA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. With the ever-increasing popularity of edge devices, it is necessary to implement real-time segmentation on the edge for autonomous driving and many other applications. Vision Transformers (ViTs) have shown considerably stronger results for many vision tasks. However, ViTs with the fullattention mechanism usually consume a large number of computational resources, leading to difficulties for realtime inference on edge devices. In this paper, we aim to derive ViTs with fewer computations and fast inference speed to facilitate the dense prediction of semantic segmentation on edge devices. To achieve this, we propose a pruning parameterization method to formulate the pruning problem of semantic segmentation. Then we adopt a bi-level optimization method to solve this problem with the help of implicit gradients. Our experimental results demonstrate that we can achieve 38.9 mIoU on ADE20K val with a speed of 56.5 FPS on Samsung S21, which is the highest mIoU under the same computation constraint with real-time inference. 
    more » « less
  2. — In this paper, we present CaveSeg - the first visual learning pipeline for semantic segmentation and scene parsing for AUV navigation inside underwater caves. We address the problem of scarce annotated training data by preparing a comprehensive dataset for semantic segmentation of underwater cave scenes. It contains pixel annotations for important navigation markers (e.g. caveline, arrows), obstacles (e.g. ground plain and overhead layers), scuba divers, and open areas for servoing. Through comprehensive benchmark analyses on cave systems in USA, Mexico, and Spain locations, we demonstrate that robust deep visual models can be developed based on CaveSeg for fast semantic scene parsing of underwater cave environments. In particular, we formulate a novel transformer-based model that is computationally light and offers near real-time execution in addition to achieving state-of-the-art performance. Finally, we explore the design choices and implications of semantic segmentation for visual servoing by AUVs inside underwater caves. The proposed model and benchmark dataset open up promising opportunities for future research in autonomous underwater cave exploration and mapping. 
    more » « less
  3. Simulation-to-real domain adaptation for semantic segmentation has been actively studied for various applications such as autonomous driving. Existing methods mainly focus on a single-source setting, which cannot easily handle a more practical scenario of multiple sources with different distributions. In this paper, we propose to investigate multi-source domain adaptation for semantic segmentation. Specifically, we design a novel framework, termed Multi-source Adversarial Domain Aggregation Network (MADAN), which can be trained in an end-to-end manner. First, we generate an adapted domain for each source with dynamic semantic consistency while aligning at the pixel-level cycle-consistently towards the target. Second, we propose sub-domain aggregation discriminator and cross-domain cycle discriminator to make different adapted domains more closely aggregated. Finally, feature-level alignment is performed between the aggregated domain and target domain while training the segmentation network. Extensive experiments from synthetic GTA and SYNTHIA to real Cityscapes and BDDS datasets demonstrate that the proposed MADAN model outperforms state-of-the-art approaches. Our source code is released at: https://github.com/Luodian/MADAN. 
    more » « less
  4. null (Ed.)
    The ability to detect failures and anomalies are fundamental requirements for building reliable systems for computer vision applications, especially safety-critical applications of semantic segmentation, such as autonomous driving and medical image analysis. In this paper, we systematically study failure and anomaly detection for semantic segmentation and propose a unified framework, consisting of two modules, to address these two related problems. The first module is an image synthesis module, which generates a synthesized image from a segmentation layout map, and the second is a comparison module, which computes the difference between the synthesized image and the input image. We validate our framework on three challenging datasets and improve the state-of-the-arts by large margins, i.e., 6% AUPR-Error on Cityscapes, 7% Pearson correlation on pancreatic tumor segmentation in MSD and 20% AUPR on StreetHazards anomaly segmentatio 
    more » « less
  5. Bird's-eye-view Semantic Segmentation (BEVSS) is a powerful and crucial component of planning and control systems in many autonomous vehicles. Current methods rely on end-to-end learning to train models, leading to indirectly supervised and inaccurate camera-to-BEV projections. We propose a novel method of supervising feature extraction with camera-view depth and segmentation information, which improves the quality of feature extraction and projection in the BEVSS pipeline. Our model, evaluated on the nuScenes dataset, shows a 3.8% improvement in Intersection-over-Union (IoU) for vehicle segmentation and a 30-fold reduction in depth error compared to baselines, while maintaining competitive inference times of 32 FPS. This method offers more accurate and reliable BEVSS for real-time autonomous driving systems. The codes and implementation details and code can be found athttps://github.com/bluffish/sucam. 
    more » « less