We consider minimizing harmonic maps from into a closed Riemannian manifold and prove: 1. an extension to of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold is finite, we have\[ \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is we obtain that the singular set of is stable under small -perturbations of the boundary data. In dimension both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space with and satisfying . We also discuss sharpness.
more »
« less
Stability and chaos in dynamical last passage percolation
Many complex disordered systems in statistical mechanics are characterized by intricate energy landscapes. The ground state, the configuration with lowest energy, lies at the base of the deepest valley. In important examples, such as Gaussian polymers and spin glass models, the landscape has many valleys and the abundance of near-ground states (at the base of valleys) indicates the phenomenon ofchaos, under which the ground state alters profoundly when the disorder of the model is slightly perturbed. In this article, we compute the critical exponent that governs the onset of chaos in a dynamic manifestation of a canonical model in the Kardar-Parisi-Zhang [KPZ] universality class, Brownian last passage percolation [LPP]. In this model in its static form, semidiscrete polymers advance through Brownian noise, their energy given by the integral of the white noise encountered along their journey. A ground state is ageodesic, of extremal energy given its endpoints. We perturb Brownian LPP by evolving the disorder under an Ornstein-Uhlenbeck flow. We prove that, for polymers of length , a sharp phase transition marking the onset of chaos is witnessed at the critical time . Indeed, the overlap between the geodesics at times zero and that travel a given distance of order will be shown to be of order when ; and to be of smaller order when . We expect this exponent to be universal across a wide range of interface models. The present work thus sheds light on the dynamical aspect of the KPZ class; it builds on several recent advances. These include Chatterjee’s harmonic analytic theory [Superconcentration and related topics, Springer, Cham, 2014] of equivalence ofsuperconcentrationandchaosin Gaussian spaces; a refined understanding of the static landscape geometry of Brownian LPP developed in the companion paper (see S. Ganguly and A. Hammond [Electron. J. Probab. 28 (2023), 80 pp.]); and, underlying the latter, strong comparison estimates of the geodesic energy profile to Brownian motion (see J. Calvert, A. Hammond, and M. Hegde [Astérisque 441 (2023), pp. v+119]).
more »
« less
- Award ID(s):
- 2153359
- PAR ID:
- 10513059
- Publisher / Repository:
- American Mathematical Society (AMS)
- Date Published:
- Journal Name:
- Communications of the American Mathematical Society
- Volume:
- 4
- Issue:
- 9
- ISSN:
- 2692-3688
- Format(s):
- Medium: X Size: p. 387-479
- Size(s):
- p. 387-479
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The hypersimplex is the image of the positive Grassmannian under the moment map. It is a polytope of dimension in . Meanwhile, the amplituhedron is the projection of the positive Grassmannian into the Grassmannian under a map induced by a positive matrix . Introduced in the context ofscattering amplitudes, it is not a polytope, and has full dimension inside . Nevertheless, there seem to be remarkable connections between these two objects viaT-duality, as conjectured by Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid theory, total positivity, and the geometry of the hypersimplex and positroid polytopes to obtain a deeper understanding of the amplituhedron. We show that the inequalities cutting outpositroid polytopes—images of positroid cells of under the moment map—translate into sign conditions characterizing the T-dualGrasstopes—images of positroid cells of under . Moreover, we subdivide the amplituhedron intochambers, just as the hypersimplex can be subdivided into simplices, with both chambers and simplices enumerated by the Eulerian numbers. We use these properties to prove the main conjecture of Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]: a collection of positroid polytopes is a tiling of the hypersimplex if and only if the collection of T-dual Grasstopes is a tiling of the amplituhedron for all . Moreover, we prove Arkani-Hamed–Thomas–Trnka’s conjectural sign-flip characterization of , and Łukowski–Parisi–Spradlin–Volovich’s conjectures on cluster adjacencyand onpositroid tilesfor (images of -dimensional positroid cells which map injectively into ). Finally, we introduce new cluster structures in the amplituhedron.more » « less
-
We prove and extend the longest-standing conjecture in ‘ -Catalan combinatorics,’ namely, the combinatorial formula for conjectured by Loehr and Warrington, where is a Schur function and is an eigenoperator on Macdonald polynomials. Our approach is to establish a stronger identity of infinite series of characters involvingSchur Catalanimals; these were recently shown by the authors to represent Schur functions in subalgebras isomorphic to the algebra of symmetric functions over , where is the elliptic Hall algebra of Burban and Schiffmann. We establish a combinatorial formula for Schur Catalanimals as weighted sums of LLT polynomials, with terms indexed by configurations of nested lattice paths callednests, having endpoints and bounding constraints controlled by data called aden. The special case for proves the Loehr-Warrington conjecture, giving as a weighted sum of LLT polynomials indexed by systems of nested Dyck paths. In general, for our formula implies a new version of the Loehr-Warrington conjecture. In the case where each nest consists of a single lattice path, the nests in a den formula reduce to our previous shuffle theorem for paths under any line. Both this and the Loehr-Warrington formula generalize the shuffle theorem proven by Carlsson and Mellit (for ) and Mellit. Our formula here unifies these two generalizations.more » « less
-
We show that for primes with , the class number of is divisible by . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when , there is always a cusp form of weight and level whose th Fourier coefficient is congruent to modulo a prime above , for all primes . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- extension of .more » « less
-
We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable -category of non- -invariant motivic spectra, which turns out to be equivalent to the -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this -category satisfies -homotopy invariance and weighted -homotopy invariance, which we use in place of -homotopy invariance to obtain analogues of several key results from -homotopy theory. These allow us in particular to define a universal oriented motivic -ring spectrum . We then prove that the algebraic K-theory of a qcqs derived scheme can be recovered from its -cohomology via a Conner–Floyd isomorphism\[ \]where is the Lazard ring and . Finally, we prove a Snaith theorem for the periodized version of .more » « less
An official website of the United States government
