skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of Vinyldimethylaniline and Indolizine Donor Groups on Si‐Substituted Xanthene Core Shortwave Infrared Fluorophores
Abstract Small organic molecules absorbing and emitting in the shortwave infrared (SWIR, 1000–2000 nm) region are desirable for biological imaging applications due to low auto‐fluorescence, reduce photon scattering, and good tissue penetration depth of photons which allows forin vivoimaging with high resolution and sensitivity. Si‐substituted xanthene‐based fluorophores with indolizine donors have demonstrated some of the longest wavelengths of absorption and emission from organic dyes. This work seeks to compare an indolizine heterocyclic nitrogen with dimethyl aniline nitrogen donors on otherwise identical Si‐substituted xanthene fluorophoresviaoptical spectroscopy, computational chemistry and electrochemistry. Three donors are compared including an indolizine donor, a ubiquitous dimethyl aniline donor, and a vinyl dimethyl aniline group that keeps the number of π‐bonds consistent with indolizine. Significantly higher quantum yields and molar absorptivity are observed in these studies for a dimethylamine‐based donor relative to a simple indolizine donor absorbing and emitting at similar wavelengths (~1312 nm emission). Substantially longer wavelengths are obtainable by appending aniline‐based groups to the indolizine donor (~1700 nm) indicating longer wavelengths can be accessed with indolizine donors while stronger emitters can be accessed with anilines in place of indolizine.  more » « less
Award ID(s):
1757220
PAR ID:
10513062
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhotoChem
Volume:
8
Issue:
8
ISSN:
2367-0932
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fluorescent organic dyes that absorb and emit in the near-infrared (NIR, 700–1000 nm) and shortwave infrared (SWIR, 1000–1700 nm) regions have the potential to produce noninvasive high-contrast biological images and videos. BODIPY dyes are well known for their high quantum yields in the visible energy region. To tune these chromophores to the NIR region, fused nitrogen-based heterocyclic indolizine donors were added to a BODIPY scaffold. The indolizine BODIPY dyes were synthesized via microwave-assisted Knoevenagel condensation with indolizine aldehydes. The non-protonated dyes showed NIR absorption and emission at longer wavelengths than an aniline benchmark. Protonation of the dyes produced a dramatic 0.35 eV bathochromic shift (230 nm shift from 797 nm to 1027 nm) to give a SWIR absorption and emission (λmaxemis = 1061 nm). Deprotonation demonstrates that material emission is reversibly switchable between the NIR and SWIR. 
    more » « less
  2. Abstract Changes in the viscosity of intracellular microenvironments may indicate the onset of diseases like diabetes, blood‐based illnesses, hypertension, and Alzheimer's. To date, monitoring viscosity changes in the intracellular environment remains a challenge with prior work focusing primarily on visible light‐absorbing viscosity sensing fluorophores. Herein, a series of near‐infrared (NIR, 700–1000 nm) absorbing and emitting indolizine squaraine fluorophores (1PhSQ,2PhSQ,SO3SQ,1DMASQ,7DMASQ, and1,7DMASQ) are synthesized and studied for NIR viscosity sensitivity.2PhSQexhibits a very high slope in its Forster‐Hoffmann plot at 0.75 which indicates this dye is a potent viscosity sensor. The properties of the squaraine fluorophores are studied computationallyviadensity functional theory (DFT) and time‐dependent (TD)‐DFT. Experimentally, both steady‐state and time‐resolved emission spectroscopy, absorption spectroscopy, and electrochemical characterization are conducted on the dyes. Precise photophysical tuning is observed within the series with emission maxima wavelengths as long as 881 nm for1,7DMASQand fluorescence quantum yields as high as 39.5 and 72.0 % for1PhSQin DCM and THF, respectively. The high tunability of this molecular scaffold renders indolizine squaraine fluorophores excellent prospects as viscosity‐sensitive biological imaging agents with2PhSQgiving a dramatically higher fluorescence quantum yield (from 0.3 to 37.1 %) as viscosity increases. 
    more » « less
  3. In vivo fluorescence imaging in the shortwave infrared (SWIR, 1,000–1,700 nm) and extended SWIR (ESWIR, 1,700–2,700 nm) regions has tremendous potential for diagnostic imaging. Although image contrast has been shown to improve as longer wavelengths are accessed, the design and synthesis of organic fluorophores that emit in these regions is challenging. Here we synthesize a series of silicon-RosIndolizine (SiRos) fluorophores that exhibit peak emission wavelengths from 1,300–1,700 nm and emission onsets of 1,800–2,200 nm. We characterize the fluorophores photophysically (both steady-state and time- resolved), electrochemically and computationally using time-dependent density functional theory. Using two of the fluorophores (SiRos1300 and SiRos1550), we formulate nanoemulsions and use them for general systemic circulatory SWIR fluorescence imaging of the cardiovascular system in mice. These studies resulted in high-resolution SWIR images with well-defined vasculature visible throughout the entire circulatory system. This SiRos scaffold establishes design principles for generating long-wavelength emitting SWIR and ESWIR fluorophores. 
    more » « less
  4. NIR dyes have become popular for many applications, including biosensing and imaging. For this reason, the molecular switch mechanism of the xanthene dyes makes them useful for in vivo detection and imaging of bioanalytes. Our group has been designing NIR xanthene-based dyes by the donor-acceptor-donor approach; however, the equilibrium between their opened and closed forms varies depending on the donors and spacer. We synthesized donor-acceptor-donor NIR xanthene-based dyes with an alkyne spacer via the Sonogashira coupling reaction to investigate the effects of the alkyne spacer and the donors on the maximum absorption wavelength and the molecular switching (ring opening) process of the dyes. We evaluated the strength and nature of the donors and the presence and absence of the alkyne spacer on the properties of the dyes. It was shown that the alkyne spacer extended the conjugation of the dyes, leading to absorption wavelengths of longer values compared with the dyes without the alkyne group. In addition, strong charge transfer donors shifted the absorption wavelength towards the NIR region, while donors with strong π-donation resulted in xanthene dyes with a smaller equilibrium constant. DFT/TDDFT calculations corroborated the experimental data in most of the cases. Dye 2 containing the N,N-dimethylaniline group gave contrary results and is being further investigated. 
    more » « less
  5. Molecular dyes containing carbazole-based π bridges and/or julolidine-based donors should be promising molecules for intense SWIR emission with potential application to molecular bioimaging. This study stochastically analyzes the combinations of more than 250 organic dyes constructed within the D-π-D (or equivalently D-B-D) motif. These dyes are built from 22 donors (D) and 14 π bridges (B) and are computationally examined using density functional theory (DFT). The DFT computations provide optimized geometries from which the excited state transition wavelengths and associated oscillator strengths and orbital overlaps are computed. While absorption is used as a stand-in for emission, the longer the absorption wavelength, the longer the emission should be as well for molecules of this type. Nearly 100 novel dyes reported in this work have electronic absorptions at or beyond 1200 nm, opening the possibility for future synthesis and experimental characterization of new molecular dyes with promising properties for bioimaging. 
    more » « less